【題目】如圖,在中,,以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交線段于點(diǎn),連接,以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交線段于點(diǎn),連接

1)求的度數(shù).

2)設(shè)

①線段的長(zhǎng)是關(guān)于的方程的一個(gè)根嗎?說(shuō)明理由.

②若的中點(diǎn),求的值.

【答案】145°;(2)①是,理由見(jiàn)解析;②

【解析】

1)根據(jù)等腰三角形的性質(zhì)可得,根據(jù)∠ACB=90°及三角形內(nèi)角和定理即可得答案;

2)①利用勾股定理可用a、b表示出AB的長(zhǎng),進(jìn)而可表示出BE的長(zhǎng),利用公式法可得出方程的兩個(gè)根,即可得答案;

②由DAE中點(diǎn)可得AD=,即可得出AB=+a,利用勾股定理即可得答案.

1)由作圖可知:BC=BDAC=AE,

,

,

∵在中,

2)①線段的長(zhǎng)是關(guān)于的方程的一個(gè)根.

理由如下:

由勾股定理得:,

AE=AC=b,

,

解關(guān)于的方程得:

∴線段的長(zhǎng)是關(guān)于的方程的一個(gè)根.

②∵點(diǎn)D的中點(diǎn),

,

AB=

,

整理得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2011次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的周長(zhǎng)為16,∠ADC=120,EAB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE+PB的最小值是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)MCD邊上,點(diǎn)N在正方形ABCD外部,且滿(mǎn)足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點(diǎn)E,連接BE,AC,交于F點(diǎn).

(1) ①依題意補(bǔ)全圖形;

②求證:BEAC.

(2)請(qǐng)?zhí)骄烤段BE,AD,CN所滿(mǎn)足的等量關(guān)系,并證明你的結(jié)論.

(3)設(shè)AB=1,若點(diǎn)M沿著線段CD從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D,則在該運(yùn)動(dòng)過(guò)程中,線段EN所掃過(guò)的面積為______________(直接寫(xiě)出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下面直角坐標(biāo)系中,已知A0a),Bb0),Cb,c)三點(diǎn),其中a、b、c滿(mǎn)足關(guān)系式+b32=0,(c42≤0

1 a=_____b=_____、c=_____

2)求四邊形AOBC的面積;

3)如果在第二象限內(nèi)有一點(diǎn)Pm,),且四邊形ABOP的面積與ABC的面積相等 ,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點(diǎn),以AC為直徑的⊙O交AB于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=6,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九(2)班同學(xué)為了了解2019年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)的部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理:

月均用水量(噸)

頻數(shù)

頻率

6

0.12

________

0.24

16

0.32

10

0.20

4

________

2

0.04

請(qǐng)解答以下問(wèn)題:

1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

2)月均用水量的中位數(shù)落在第________小組;

3)若該小區(qū)有1000戶(hù)家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過(guò)20噸的家庭大約有多少戶(hù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案