【題目】如圖①,矩形紙片ABCD的邊長分別為a、b(a<b),點M、N分別為邊AD、BC上兩點(點A、C除外),連接MN.
(1)如圖②,分別沿ME、NF 將MN兩側(cè)紙片折疊,使點A、C分別落在MN上的A′、C′處,直接寫出ME與FN的位置關(guān)系;
(2)如圖③,當MN⊥BC 時,仍按(1)中的方式折疊,請求出四邊形A′EBN與四邊形C′FDM 的周長(用含a的代數(shù)式表示),并判斷四邊形A′EBN與四邊形C′FDM周長之間的數(shù)量關(guān)系;
(3)如圖④,若對角線BD與MN交于點O,分別沿BM、DN將MN兩側(cè)紙片折疊,折疊后,點A、C恰好都落在點O處,并且得到的四邊形BNDM是菱形,請你探索a、b之間的數(shù)量關(guān)系.
【答案】(1)EM∥NF ;(2)的周長與的周長相等;(3)
【解析】(1)先根據(jù)翻折變換的性質(zhì)得到∠EMN=∠AMN,∠FNC′=∠MNC,再由平行線的性質(zhì)可得到∠AMN=∠MNC,由平行線的判定定理即可得到ME∥FN;
(2)由折疊得知:A′E=AE,根據(jù)四邊形A′EBN是矩形,即可求出四邊形A′EBN的即四邊形C′FDM的周長;
(3)根據(jù)折疊的性質(zhì)可知OD=CD=OB=a,在△BCD中利用勾股定理即可求出b的值.
(1)EM∥NF ;
(2)∵矩形ABCD,
∴∠A=90°=∠B,
∵△AEM沿EM折疊到△
∴∠,AE=
∵MN⊥BC,
∴∠MNB=90°,
∴有矩形 ,
∴其周長為 ,
同理 四邊形也為矩形,周長為,
,
∴的周長與的周長相等;
(3)∵四邊形BNDM是菱形,
∴BM=MD,BD⊥MN,BO=DO,MO=NO,∠MBO=∠NBO,
∵△ABM沿BM折疊到△OBM,
∴AB=OB,AM=MO,∠ABM=∠OBM,
∵四邊形ABCD是矩形,
∴∠ABC=90°,
∴∠MBO=30°,
在Rt△MBO中,∠MOB=90°,
∴BM=2MO,
設(shè)MO=x,BM=2x,
BO=
AD=AM+MD=BM+MO=3x
∴,即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為 的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,拋物線 與 軸交于A,B兩點,點P在拋物線上(點P與A,B兩點不重合),如果△ABP的三邊滿足 ,則稱點P為拋物線 的勾股點。
(1)直接寫出拋物線 的勾股點的坐標;
(2)如圖2,已知拋物線C: 與 軸交于A,B兩點,點P(1, )是拋物線C的勾股點,求拋物線C的函數(shù)表達式;
(3)在(2)的條件下,點Q在拋物線C上,求滿足條件 的點Q(異于點P)的坐標
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在全體麗水人民的努力下,我市剿滅劣V類水“河道清淤”工程取得了階段性成果,下面的右表是全市十個縣(市、區(qū))指標任務(wù)數(shù)的統(tǒng)計表;左圖是截止2017年3月31日和截止5月4日,全市十個縣(市、區(qū))指標任務(wù)累計完成數(shù)的統(tǒng)計圖.
(1)截止3月31日,完成進度(完成進度=累計完成數(shù)÷任務(wù)數(shù)×100%)最快、電慢的縣(市、區(qū))分別是哪一個?
(2)求截止5月4日全市的完成進度;
(3)請結(jié)合圖形信息和數(shù)據(jù)分析,對I且完成指標任務(wù)的行動過程和成果進行評價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°
(1)如圖1,點E為線段AB的中點,連接DE、CE,若AB=4,求線段EC的長;
(2)如圖2,M為線段AC上一點(不與A、C重合),以AM為邊向上構(gòu)造等邊三角形AMN,連接NC、DM,Q為線段NC的中點,連接DQ、MQ,判斷DM與DQ的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為-10,B點對應(yīng)的數(shù)為90.
(1)請寫出與A,B兩點距離相等的M點對應(yīng)的數(shù);
(2)現(xiàn)在有一只電子螞蟻P從B點出發(fā)時,以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,設(shè)兩只電子螞蟻在數(shù)軸上的C點相遇,求C點對應(yīng)的數(shù)是多少.
(3)若當電子螞蟻P從B點出發(fā)時,以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,求經(jīng)過多長的時間兩只電子螞蟻在數(shù)軸上相距35個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)生物學(xué)研究結(jié)果,青春期男女生身高增長速度呈現(xiàn)如下圖規(guī)律,由圖可以判斷,下列說法錯誤的是( )
A.男生在13歲時身高增長速度最快
B.女生在10歲以后身高增長速度放慢
C.11歲時男女生身高增長速度基本相同
D.女生身高增長的速度總比男生慢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上有A、B兩點,所表示的數(shù)分別為n,n+6,A點以每秒5個單位長度的速度向右運動,同時B點以每秒3個單位長度的速度也向右運動,設(shè)運動時間為t 秒.
(1)當n=1時,求AB的值;
(2)當t 為何值時,A、B兩點重合;
(3)在上述運動的過程中,若P為線段AB的中點,數(shù)軸上點C所表示的數(shù)為n+10是否存在t 的值,使得線段PC=4,若存在,求t 的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和,例如:23,33和43分別可以按如圖所示的方式“分裂”,則63“分裂”出的奇數(shù)中,最大的奇數(shù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com