【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當將遮陽傘撐開至OD位置時,測得∠ODB45°,當將遮陽傘撐開至OE位置時,測得∠OEC30°,且此時遮陽傘邊沿上升的豎直高度BC20cm,求若當遮陽傘撐開至OE位置時傘下陰涼面積最大,求此時傘下半徑EC的長.(結(jié)果保留根號)

【答案】20cm

【解析】

根據(jù)題意可得OEOD,由三角函數(shù)得出OCOEOB,再利用BCOBOC解答即可.

解:由題意可得:OEOD,

RtOEC中,∠BOE60°,∠OCE90°

OCOE,

RtOBD中,∠DOB45°,∠OBD90°,

OBODOE,

BCOBOC,

即,OEOE20

解得:OE40+1cm,

EC×20+1)=20cm

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,于點,于另一點

1)求證:;

2)若上一動點,則

①當 時,以,為頂點的四邊形是正方形;

②當 時,以,,為頂點的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,的直徑,、為圓周上兩點,且,過點,交的延長線于點

1)求證:切線;

2)填空:①當四邊形為菱形,則的度數(shù)為________;

②當時,四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)購買甲、乙兩種樹苗進行綠化,購買一棵甲種樹苗的價錢比購買一棵乙種樹苗的價錢多 10 元錢,已知購買 20 棵甲種樹苗、30 棵乙種樹苗共需 1 200 元錢.

1)求購買一棵甲種、一棵乙種樹苗各多少元?

2)社區(qū)決定購買甲、乙兩種樹苗共 400 棵,總費用不超過 10 600 元,那么該社區(qū)最多可以購買多少棵甲種樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中, 是平面內(nèi)不與點重合的任意一點, 連接,將線段繞點逆時針旋轉(zhuǎn)得到線段,連接

1)動手操作

如圖1,當時,我們通過用 刻度尺和量角器度量發(fā)現(xiàn):

的值是;直線與直線相交所成的較小角的度數(shù)是;

請證明以上結(jié)論正確.

2)類比探究

如圖2,當時,請寫出的值及直線與直線相交所成的較小角的度數(shù),并就圖2的情形說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE90°,以CE、BC為邊作平行四邊形CEFB,連CDCF

1)如圖1,當E、D分別在ACAB上時,求證:CDCF

2)如圖2,△ADE繞點A旋轉(zhuǎn)一定角度,判斷(1)中CDCF的數(shù)量關(guān)系是否依然成立,并加以證明;

3)如圖3AE,AB,將△ADEA點旋轉(zhuǎn)一周,當四邊形CEFB為菱形時,直接寫出CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐 中,,點為斜邊上的動點(不與點重合)

1)操作發(fā)現(xiàn): 如圖①,當時,把線段繞點逆時針旋轉(zhuǎn)得到線段,連接

的度數(shù)為________

②當________時,四邊形為正方形;

2)探究證明: 如圖②,當時,把線段繞點逆時針旋轉(zhuǎn)后并延長為原來的兩倍, 記為線段,連接

①在點的運動過程中,請判斷的大小關(guān)系,并證明;

②當時,求證:四邊形為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的,稱為第次操作,折痕的距離記為;還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第次操作,折痕的距離記為;按上述方法不斷操作下去…,經(jīng)過第次操作后得到的折痕,到的距離記為,若,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市對即將參加中考的4000名初中畢業(yè)生進行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和不完整的頻數(shù)分布直方圖.請根據(jù)圖表信息回答下列問題:

初中畢業(yè)生視力抽樣調(diào)查頻數(shù)分布表

視力

頻數(shù)(人)

頻率

4.0≤x4.3

20

0.1

4.3≤x4.6

40

0.2

4.6≤x4.9

70

0.35

4.9≤x5.2

a

0.3

5.2≤x5.5

10

b

1)本次調(diào)查樣本容量為   

2)在頻數(shù)分布表中,a  b   ,并將頻數(shù)分布直方圖補充完整;

3)若視力在4.9以上(含4.9)均屬標準視力,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中達到標準視力的學生約有多少人?

查看答案和解析>>

同步練習冊答案