【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(0,3),C(2,n)兩點(diǎn),直線l:y=x+2過C點(diǎn),且與y軸交于點(diǎn)B,拋物線上有一動點(diǎn)E,過點(diǎn)E作直線EF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)D
(1)求拋物線的解析式.
(2)如圖1,當(dāng)點(diǎn)E在直線BC上方的拋物線上運(yùn)動時,連接BE,BF,是否存在點(diǎn)E使直線BC將△BEF的面積分為2:3兩部分?若存在,求出點(diǎn)E的坐標(biāo),若不存在說明理由;
(3)如圖2,若點(diǎn)E在y軸右側(cè)的拋物線上運(yùn)動,連接AE,當(dāng)∠AED=∠ABC時,直接寫出此時點(diǎn)E的坐標(biāo).
【答案】(1)y=﹣x2+2x+3;(2)存在,E(,)或(,);(3)點(diǎn)E(,)或(,).
【解析】
(1)直線l:y=x+2過C點(diǎn),則點(diǎn)C(2,3),y=x+2過C點(diǎn),且與y軸交于點(diǎn)B,則點(diǎn)B(0,2),即可求解;(2)===或,即可求解;(3)分當(dāng)點(diǎn)E在直線BC上方、點(diǎn)E在直線BC的下方兩種情況,分別求解即可.
(1)直線l:y=x+2過點(diǎn)C(2,n),且與y軸交于點(diǎn)B,
∴n=×2+2=3,當(dāng)x=0時,y=2,
∴B(0,2),C(2,3)
將點(diǎn)A、C的坐標(biāo)代入二次函數(shù)表達(dá)式得:,
解得:,
∴拋物線的表達(dá)式為:y=﹣x2+2x+3;
(2)設(shè)點(diǎn)E(m,﹣m2+2m+3),則點(diǎn)D(m,m+2),
∴DE=﹣m2+m+1,DF=m+2,
===或,
解得:m=或,
∴﹣m2+2m+3=,或﹣m2+2m+3=,
∴點(diǎn)E(,)或(,);
(3)由(2)知:E(m,﹣m2+2m+3),則點(diǎn)D(m,m+2),
DE=﹣m2+m+1,DF=m+2,
①如圖2,當(dāng)點(diǎn)E在直線BC上方時,
∵AB∥EF,∠ABD+∠EDB=180°,
∵∠AED=∠ABC,
∴∠AED+∠EDB=180°,
∴AE∥CD,
∴四邊形ABDE為平行四邊形,
∴AB=DE=1=﹣m2+m+1,
解得:m=0或(舍去0);
∴﹣m2+2m+3=,即E(,).
②如圖3,當(dāng)點(diǎn)E在直線BC的下方時,
設(shè)AE、BD交于點(diǎn)N,過點(diǎn)N作x軸的平行線交DE于點(diǎn)M
∵AB∥DE,
∴∠ABN=∠NDE,而∠AED=∠ABC,
∴∠ABN=∠NDE=∠AED=∠ABC,
∴△NAB、△DEN都是以點(diǎn)N為頂點(diǎn)的等腰三角形,
∴點(diǎn)M的縱坐標(biāo)和AB中點(diǎn)的坐標(biāo)同為,
由中點(diǎn)公式得:(﹣m2+2m+3+m+2)=,
解得:m=0或(舍去0),
∴﹣m2+2m+3=,即E(,).
綜上,點(diǎn)E(,)或(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A為某封閉圖形邊界上一定點(diǎn),動點(diǎn)P從點(diǎn)A出發(fā),沿其邊界順時針勻速運(yùn)動一周,設(shè)點(diǎn)P運(yùn)動的時間為x,線段AP的長為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖所示,則該封閉圖形可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(x1,0),B(x2,0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=-3x+t上.
(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)y1隨著x的增大而增大時,求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個單位,當(dāng)平移后的直線與P有公共點(diǎn)時,求2n2-5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了40m,此時自B處測得建筑物頂部的仰角是45°.已知測角儀的高度是1.5m,請你計(jì)算出該建筑物的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)O是AB邊上一點(diǎn),以O為圓心OB為半徑的⊙O與邊AB相交于點(diǎn)E,與AC邊相切于D點(diǎn),連接OC交⊙O于點(diǎn)F.
(1)連接DE,求證:OC∥DE;
(2)若⊙O的半徑為3.
①連接DF,若四邊形OEDF為菱形,弧BD的長為_____(結(jié)果保留π)
②若AE=2,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx-1經(jīng)過點(diǎn)A(-2,1)和點(diǎn)B(-1,-1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M.
(1)求拋物線C1的表達(dá)式;
(2)直接用含t的代數(shù)式表示線段MN的長;
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時,求t的值;
(4)在(3)的條件下,設(shè)拋物線C1與y軸交于點(diǎn)P,點(diǎn)M在y軸右側(cè)的拋物線C2上,連接AM交y軸于點(diǎn)K,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQ和QN,當(dāng)KQ=1且∠KNQ=∠BNP時,請直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延長CA到點(diǎn)F,使得AF=AC,連接DF、BE,則線段BE與DF的數(shù)量關(guān)系為 ,位置關(guān)系為 ;
(2)(拓展研究)
將△ADE繞點(diǎn)A旋轉(zhuǎn),(1)中的結(jié)論有無變化?僅就圖(2)的情形給出證明;
(3)(解決問題)
當(dāng)AB=2,AD=,△ADE旋轉(zhuǎn)得到D,E,F三點(diǎn)共線時,直接寫出線段DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com