【題目】等腰三角形中,兩腰和底的長(zhǎng)分別是10和13,求三角形的三個(gè)內(nèi)角的度數(shù)(精確到1′)

【答案】解:如圖所示,AB=AC=10,BC=13,AD是底邊上的高,

AD是底邊上的高,
ADBC ,
又∵AB=AC ,
BD=CD=6.5,∠BAD=∠CAD= BAC ,
RtABD中,sinBAD= =0.65,
∴∠BAD≈40°32′,
∴∠BAC≈2∠BAD≈81°4′,∠B=∠C≈49°28′
故△ABC的三個(gè)內(nèi)角分別為:81°4′,49°28′,49°28′
【解析】先畫圖,AB=AC=10,BC=13,AD是底邊上的高,利用等腰三角形三線合一定理可知BD=CD=6.5,∠BAD=∠CAD= BAC , 在RtABD中,利用∠BAD的正弦值的計(jì)算,結(jié)合計(jì)算器,可求∠BAD , 從而可求∠B、∠BAC , 那么∠C=∠B即可求

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E點(diǎn)在AB上,F(xiàn)點(diǎn)在BC的延長(zhǎng)線上,且CF=AE,連接DE、DF、EF.
(1)求證:△ADE≌△CDF;
(2)填空:△CDF可以由△ADE繞旋轉(zhuǎn)中心點(diǎn),按逆時(shí)針方向旋轉(zhuǎn)度得到;
(3)若BC=3,AE=1,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題的逆命題不成立的是(  )

A. 如果兩個(gè)數(shù)互為相反數(shù),那么它們的和等于0

B. 如果兩個(gè)角相等,那么這兩個(gè)角的補(bǔ)角也相等

C. 如果兩個(gè)數(shù)相等,那么它們的平方相等

D. 如果|a|=|b|,那么a=b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某漁船在海面上朝正東方向勻速航行,在A處觀測(cè)到燈塔M在北偏東60°方向上,航行半小時(shí)后到達(dá)B處,此時(shí)觀測(cè)到燈塔M在北偏東30°方向上,那么該船繼續(xù)航行到達(dá)離燈塔距離最近的位置所需時(shí)間是(  )

A.10分鐘
B.15分鐘
C.20分鐘
D.25分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D , E , F , G , 已知∠CGD=42°

(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過三角板的頂點(diǎn)B , 交AC邊于點(diǎn)H , 如圖②所示,點(diǎn)H , B在直尺上的度數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高線,BE是一條角平分線,它們相交于點(diǎn)P , 已知∠EPD=125°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,BC=4cm , EAD的中點(diǎn),FG分別為BE、CD的中點(diǎn),則FG=( 。cm
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB切⊙O于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長(zhǎng)為 . (結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案