【題目】如圖,二次函數(shù) y=﹣x2+bx+c 的圖象經(jīng)過 A(1,0),B(0,﹣3)兩點(diǎn).

(1)求這個(gè)拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)設(shè)該二次函數(shù)的對(duì)稱軸與 x 軸交于點(diǎn) C,連接 BA、BC,求ABC 的面積.

(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn) P,使得 O、B、CP 四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出 P 點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)y=﹣x2+4x﹣3, y=﹣(x﹣22+1,(2,1);(2;(3)(2,3)(2,-3).

【解析】

(1)根據(jù)二次函數(shù) 的圖象經(jīng)過 A(1,0),B(0,﹣3)兩點(diǎn),即可得到拋物線的解析式為 ,進(jìn)而得出拋物線的頂點(diǎn)坐標(biāo);

(2)由(1)可得,C(2,0),根據(jù) A(1,0),B(0,﹣3),可得 OC=2,OA=1, OB=3,AC=1,即可得到ABC的面積;

(3)分兩種情況討論:當(dāng)四邊形 OBCP1 是平行四邊形時(shí),CP1=OB=3;當(dāng)四邊形 OBP2C 是平行四邊形時(shí),CP2=OB=3,即可得到 P 點(diǎn)坐標(biāo).

解:(1)∵二次函數(shù) 的圖象經(jīng)過 A1,0),B0,﹣3)兩點(diǎn),

∴拋物線的解析式為

∴拋物線的頂點(diǎn)坐標(biāo)為(2,1);

2)由(1)可得,C2,0),又∵A1,0),B0,﹣3),

OC=2,OA =1,OB=3,

AC=1,

∴△ABC 的面積

3)存在,P 點(diǎn)有2個(gè),坐標(biāo)為 P12,3),P22,﹣3).

如圖,當(dāng)四邊形 OBCP1 是平行四邊形時(shí),CP1=OB=3,而 OC=2, P12,3);

當(dāng)四邊形 OBP2C 是平行四邊形時(shí),CP2=OB=3,而 OC=2, P22,﹣3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖點(diǎn) E ABC 的內(nèi)心,AE 的延長(zhǎng)線和ABC 的外接圓相交于點(diǎn) D, BE

(1) 若∠CBD=35°,求∠BAC 及∠BEC 的度數(shù)

(2) 求證DEDB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足H在半徑OB上,AH=5,CD=,點(diǎn)E在弧AD上,射線AECD的延長(zhǎng)線交于點(diǎn)F.

(1)求圓O的半徑;

(2)如果AE=6,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎同學(xué)學(xué)完統(tǒng)計(jì)知識(shí)后,隨機(jī)調(diào)查了她所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計(jì)圖

請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息解答下列問題

(1)小穎同學(xué)共調(diào)查了多少名居民的年齡,扇形統(tǒng)計(jì)圖中ab各等于多少?

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該轄區(qū)年齡在0~14歲的居民約有1500,請(qǐng)估計(jì)年齡在15~59歲的居民的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC與△ADE中,∠C=∠AED=90°,點(diǎn)EAB上,那么添加下列一個(gè)條件后,仍無法判定△ABC∽△DAE的是(

A. B. B =∠D C. ADBC D. BAC=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R)隨溫度t)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10上升到30的過程中,電阻與溫度成反比例關(guān)系,且在溫度達(dá)到30時(shí),電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1,電阻增加

(1)求當(dāng)10≤t≤30時(shí),Rt之間的關(guān)系式;

(2)求溫度在30℃時(shí)電阻R的值;并求出t≥30時(shí),Rt之間的關(guān)系式;

(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過6 kΩ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,ABC內(nèi)接于O,AB=AC,BD為O的弦,且ABCD,過點(diǎn)A作O的切線AE與DC的延長(zhǎng)線交于點(diǎn)E,AD與BC交于點(diǎn)F.

(1)求證:四邊形ABCE是平行四邊形;

(2)若AE=6,CD=5,求OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案