【題目】把邊長(zhǎng)分別為4和6的矩形ABCO如圖放在平面直角坐標(biāo)系中,將它繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a角,旋轉(zhuǎn)后的矩形記為矩形EDCF.在旋轉(zhuǎn)過程中,
(1)如圖①,當(dāng)點(diǎn)E在射線CB上時(shí),E點(diǎn)坐標(biāo)為 ;
(2)當(dāng)△CBD是等邊三角形時(shí),旋轉(zhuǎn)角a的度數(shù)是 (a為銳角時(shí));
(3)如圖②,設(shè)EF與BC交于點(diǎn)G,當(dāng)EG=CG時(shí),求點(diǎn)G的坐標(biāo);
(4)如圖③,當(dāng)旋轉(zhuǎn)角a=90°時(shí),請(qǐng)判斷矩形EDCF的對(duì)稱中心H是否在以C為頂點(diǎn),且經(jīng)過點(diǎn)A的拋物線上.
【答案】(1)E(4,2);
(2)60°;
(3);
(4)點(diǎn)H不在此拋物線上.
【解析】
試題(1)依題意得點(diǎn)E在射線CB上,橫坐標(biāo)為4,縱坐標(biāo)根據(jù)勾股定理可得點(diǎn)E.
(2)已知∠BCD=60°,∠BCF=30°,然后可得∠α=60°.
(3)設(shè)CG=x,則EG=x,FG=6﹣x,根據(jù)勾股定理求出CG的值.
(4)設(shè)以C為頂點(diǎn)的拋物線的解析式為y=a(x﹣4)2,把點(diǎn)A的坐標(biāo)代入求出a值.當(dāng)x=7時(shí)代入函數(shù)解析式可得解.
解.(1)E(4,2)
(2)60°
(3)設(shè)CG=x,則EG=x,FG=6﹣x,
在Rt△FGC中,∵CF2+FG2=CG2,
∴42+(6﹣x)2=x2
解得,即
∴
(4)設(shè)以C為頂點(diǎn)的拋物線的解析式為y=a(x﹣4)2,
把A(0,6)代入,得6=a(0﹣4)2.
解得a=.
∴拋物線的解析式為y=(x﹣4)2
∵矩形EDCF的對(duì)稱中心H即為對(duì)角線FD、CE的交點(diǎn),
∴H(7,2).
當(dāng)x=7時(shí),
∴點(diǎn)H不在此拋物線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以2的速度移動(dòng).
(1)如果點(diǎn),分別從點(diǎn),同時(shí)出發(fā),那么幾秒后,的面積等于6?
(2)如果點(diǎn),分別從點(diǎn),同時(shí)出發(fā),那么幾秒后,的長(zhǎng)度等于7?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,D為BC的中點(diǎn),過點(diǎn)C作于點(diǎn)G,過點(diǎn)B作于點(diǎn)B,交CG的延長(zhǎng)線于點(diǎn)F,連接DF交AB于點(diǎn)E.
(1)求證:;
(2)求證:AB垂直平分DF;
(3)連接AF,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c的對(duì)稱軸為x=2,且過點(diǎn)C(0,3)
(1)求此拋物線的解析式;
(2)證明:該拋物線恒在直線y=﹣2x+1上方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)中,直線l:y=﹣2x+6分別交兩坐標(biāo)于A、B兩點(diǎn),M是級(jí)段AB上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為x,△OMB的面積為S.
(1)寫出S與x的函數(shù)關(guān)系式;
(2)當(dāng)△OMB的面積是△OAB面積的時(shí),求點(diǎn)M的坐標(biāo);
(3)當(dāng)△OMB是以OB為底的等腰三角形,求它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,與的平分線交于點(diǎn),過點(diǎn)做,分別交、于點(diǎn)、,若的周長(zhǎng)為18,則的長(zhǎng)是( )
A.8B.9C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某倉儲(chǔ)中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4 m,B,C在同一水平面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長(zhǎng)方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5 m時(shí),求點(diǎn)D離地面的高.(≈2.236,結(jié)果精確到0.1 m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是邊長(zhǎng)為1的正方形ABCD的對(duì)角線,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BCE≌△DCF;
(2)求CF的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com