【題目】如圖,在中,,,,點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以2的速度移動(dòng).
(1)如果點(diǎn),分別從點(diǎn),同時(shí)出發(fā),那么幾秒后,的面積等于6?
(2)如果點(diǎn),分別從點(diǎn),同時(shí)出發(fā),那么幾秒后,的長(zhǎng)度等于7?
【答案】(1)出發(fā)1秒后,的面積等于6;(2)出發(fā)0秒或秒后,的長(zhǎng)度等于7.
【解析】
(1)設(shè)秒后,的面積等于6,根據(jù)路程=速度×?xí)r間,即可用x表示出AP、BQ和BP的長(zhǎng),然后根據(jù)三角形的面積公式列一元二次方程,并解方程即可;
(2)設(shè)秒后,的長(zhǎng)度等于7,根據(jù)路程=速度×?xí)r間,即可用y表示出AP、BQ和BP的長(zhǎng),利用勾股定理列一元二次方程,并解方程即可.
解: (1)設(shè)秒后,的面積等于6,
∵點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以2的速度移動(dòng)
∴,
∴
則有
∴(此時(shí)2×6=12>BC,故舍去)
答:出發(fā)1秒后,的面積等于6
(2)設(shè)秒后,的長(zhǎng)度等于7
∵點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以2的速度移動(dòng)
∴,
∴
解得
答:出發(fā)0秒或秒后,的長(zhǎng)度等于7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的普及,微信搶紅包已成為春節(jié)期間人們最喜歡的活動(dòng)之一,某校七年級(jí)(1)班班長(zhǎng)對(duì)全班50名學(xué)生在春節(jié)期間所搶的紅包金額進(jìn)行統(tǒng)計(jì),并繪制成了統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息回答:
(1)該班同學(xué)所搶紅包金額的眾數(shù)是______,
中位數(shù)是______;
(2)該班同學(xué)所搶紅包的平均金額是多少元?
(3)若該校共有18個(gè)班級(jí),平均每班50人,請(qǐng)你估計(jì)該校學(xué)生春節(jié)期間所搶的紅包總金額為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)(x>0)的圖象與一次函數(shù)y=3x的圖象相交于點(diǎn)A,其橫坐標(biāo)為2.
(1)求k的值;
(2)點(diǎn)B為此反比例函數(shù)圖象上一點(diǎn),其縱坐標(biāo)為3.過(guò)點(diǎn)B作CB∥OA,交x軸于點(diǎn)C,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的面積為9,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在函數(shù)y=(k>0,x>0)的圖像上點(diǎn)P(m,n)是函數(shù)圖像上任意一點(diǎn),過(guò)點(diǎn)P分別作x軸y軸的垂線(xiàn),垂足分別為E,F.并設(shè)矩形OEPF和正方形OABC不重合的部分的面積為S.
(1)求k的值;
(2)當(dāng)S=時(shí) 求p點(diǎn)的坐標(biāo);
(3)寫(xiě)出S關(guān)于m的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在坐標(biāo)平面內(nèi),等腰直角中,,,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,交軸于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求點(diǎn)的坐標(biāo);
(3)如圖,點(diǎn)在軸上,當(dāng)的周長(zhǎng)最小時(shí),求出點(diǎn)的坐標(biāo);
(4)在直線(xiàn)上有點(diǎn),在軸上有點(diǎn),求出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l1:分別與x軸、y軸交于點(diǎn)B、C,且與直線(xiàn)l2:交于點(diǎn)A.
(1)求出點(diǎn)A的坐標(biāo)
(2)若D是線(xiàn)段OA上的點(diǎn),且△COD的面積為12,求直線(xiàn)CD的解析式
(3)在(2)的條件下,設(shè)P是射線(xiàn)CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面方法,解答后面的問(wèn)題:
(閱讀理解)我們已經(jīng)學(xué)習(xí)了利用配方法解一元二次方程,其實(shí)配方法還有其他重要應(yīng)用。
例題:已知x可取任意實(shí)數(shù),試求二次三項(xiàng)式的取值范圍。
解:
∵x取任何實(shí)數(shù),總有,∴。
因此,無(wú)論x取任何實(shí)數(shù),的值總是不小于-4的實(shí)數(shù)。
特別的,當(dāng)x=3時(shí),有最小值-4
(應(yīng)用1):已知x可取任何實(shí)數(shù),則二次三項(xiàng)式的最值情況是( )
A. 有最大值-10 B. 有最小值-10 C. 有最大值-7 D. 有最小值-7
(應(yīng)用2):某品牌服裝進(jìn)貨價(jià)為每件50元,商家在銷(xiāo)售中發(fā)現(xiàn):當(dāng)以每件90元銷(xiāo)售時(shí),平均每天可售出20件,為了擴(kuò)大銷(xiāo)售量,增加盈利,商家決定采取適當(dāng)?shù)慕祪r(jià)措施。
(1)將市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件服裝降價(jià)1元,那么平均每天那就可多售出2件,要想平均每天銷(xiāo)售這種服裝盈利為1200元,我們?cè)O(shè)降價(jià)x元,根據(jù)題意列方程得( )
A. B.
C. D.
(2)請(qǐng)利用上面(閱讀理解)提供的方法解決下面問(wèn)題:
這家服裝專(zhuān)柜為了獲得每天的最大盈利,每件服裝需要降價(jià)多少元?每天的最大盈利又是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為解決部分市民冬季集中取暖問(wèn)題,需鋪設(shè)一條長(zhǎng)4000米的管道,為盡量減少施工對(duì)交通造成的影響,施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程=20,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( 。
A. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天完成
B. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天完成
C. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成
D. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把邊長(zhǎng)分別為4和6的矩形ABCO如圖放在平面直角坐標(biāo)系中,將它繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a角,旋轉(zhuǎn)后的矩形記為矩形EDCF.在旋轉(zhuǎn)過(guò)程中,
(1)如圖①,當(dāng)點(diǎn)E在射線(xiàn)CB上時(shí),E點(diǎn)坐標(biāo)為 ;
(2)當(dāng)△CBD是等邊三角形時(shí),旋轉(zhuǎn)角a的度數(shù)是 (a為銳角時(shí));
(3)如圖②,設(shè)EF與BC交于點(diǎn)G,當(dāng)EG=CG時(shí),求點(diǎn)G的坐標(biāo);
(4)如圖③,當(dāng)旋轉(zhuǎn)角a=90°時(shí),請(qǐng)判斷矩形EDCF的對(duì)稱(chēng)中心H是否在以C為頂點(diǎn),且經(jīng)過(guò)點(diǎn)A的拋物線(xiàn)上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com