如圖,在菱形ABCD中,對(duì)角線AC和BD交于點(diǎn)F,點(diǎn)E是AB的中點(diǎn),如果EF=2,那么菱形ABCD的周長(zhǎng)是


  1. A.
    4
  2. B.
    8
  3. C.
    12
  4. D.
    16
D
分析:根據(jù)中位線定理先求邊長(zhǎng)BC,再求周長(zhǎng)即可.
解答:∵菱形ABCD中,對(duì)角線AC和BD交于點(diǎn)F,
∴AF=CF,
∵E是AB的中點(diǎn),
∴EF是三角形ABC的中位線,
∴EF=BC,
∴BC=2EF=2×2=4.即AB=BC=CD=AD=4.故菱形的周長(zhǎng)為4BC=4×4=16.
故選D.
點(diǎn)評(píng):本題考查的是菱形的性質(zhì)及三角形中位線定理.菱形的性質(zhì):菱形的四條邊相等.三角形中位線定理:三角形的中位線平行于底邊,且等于底邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長(zhǎng)為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點(diǎn),P為對(duì)角線BD上任意一點(diǎn),AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時(shí),四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點(diǎn)E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案