【題目】在邊長為正方形中,點上,且,點、是對角線上兩點,且.當(dāng)四邊形周長最小時,則的值________

【答案】

【解析】

根據(jù)題意得出作EFBDEF=,連結(jié)AFBDN,在BD上截取MN=,此時四邊形CEMN的周長最小,進(jìn)而利用相似三角形的判定與性質(zhì)得出答案.

EFBDEF=,連結(jié)AFBDN,在BD上截取MN=,延長AFBCP,FQBCQ,則四邊形BMNE的周長最小,

由∠FEQ=DBC=45°,可求得FQ=EQ=1,

∵∠APB=FPQ,ABP=FQP,

∴△PFQ∽△PAB,

,

解得:PQ=,

PB=3+=,

由對稱性可求得tanBCN=tanPAB=

cosBCN=.

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2002年國際數(shù)學(xué)家大會在北京召開,大會選用了趙爽弦圖作為會標(biāo)的中心圖案.如圖,由四個全等的直角三角形與一個小正方形拼成一個大正方形.如果大正方形的面積是25,直角三角形較長的直角邊長是a,較短的直角邊長是b,且(a+b2的值為49,那么小正方形的面積是(  )

A.2B.0.5C.13D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 的函數(shù)表達(dá)式為,且直線x軸交于點D.直線x軸交于點A,且經(jīng)過點B(4,1),直線交于點.

1)求點D和點C的坐標(biāo);

2)求直線的函數(shù)表達(dá)式;

3)利用函數(shù)圖象寫出關(guān)于x,y的二元一次方程組的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,線段ABCD相交于點O,連接ADCB,我們把形如圖1的圖形稱之為“8字形.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線APCP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:

1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:   ;

2)仔細(xì)觀察,在圖2“8字形的個數(shù):   個;

3)圖2中,當(dāng)∠D40°,∠B30°度時,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視舉辦的《中國詩詞大會》受到廣泛的關(guān)注.深圳某中學(xué)學(xué)生就《中國詩詞大會》節(jié)目的喜愛程度,在校內(nèi)進(jìn)行了問卷調(diào)查,并對問卷調(diào)查的結(jié)果分為非常喜歡、比較喜歡、感覺一般、不太喜歡四個等級,分別記作A. B. C.D;根據(jù)調(diào)查結(jié)果繪制出如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次被調(diào)查對象共有___人;被調(diào)查者不太喜歡___人;

(2)將扇形統(tǒng)計圖和條形統(tǒng)計圖補充完整;

(3)深圳某中學(xué)南校區(qū)約有5000學(xué)生,請據(jù)此估計比較喜歡的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C 是線段 AB 上一點,且ACD BCE 都是等邊三角形,連接 AEBD 相交于點 O,AE、BD 分別交 CD、CE M、N,連接 MNOC,則下列所給的結(jié)論中:①AEBD;②CMCN;③MNAB;④∠AOB120;⑤OC 平分∠AOB.其中結(jié)論正確的個數(shù)是(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為個單位長度的小正方形組成的網(wǎng)格中,按要求畫出;

先向右平移個單位,再向上平移個單位,得到;

以圖中的為位似中心,將作位似變換且放大到原來的兩倍,得到;

直接回答________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個長為4cm,寬為3cm的長方形木板在桌面上做無滑動的翻滾(順時針方向),木板點A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點A滾到A2位置時共走過的路徑長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是以O為圓心的半圓的直徑,半徑COAO,點M上的動點,且不與點A、C、B重合,直線AM交直線OC于點D,連結(jié)OMCM.

(1)若半圓的半徑為10.

①當(dāng)∠AOM=60°時,求DM的長;

②當(dāng)AM=12時,求DM的長.

(2)探究:在點M運動的過程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案