如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB分別交于D、E,且⊙O與直線BD剛好相切.
(1)試證:∠CBD=∠A;
(2)若cosA=
2
5
5
,BD=2
5
,試計(jì)算⊙O的面積.
(1)證明:連OD,如圖,
∴∠A=∠ADO,
∵直線BD與⊙O相切,
∴OD⊥BD,
∴∠ODB=90°,
∴∠ADO+∠BDC=90°,
又∵∠C=90°,
∴∠CBD+∠CDB=90°,
∴∠CBD=∠ADO,
∴∠CBD=∠A;
(2)連DE,cosA=cos∠CBD=
2
5
5

在Rt△DCB,cosA=
2
5
5
,BD=2
5
,
∴cos∠CBD=
BC
DB
,
∴BC=
2
5
5
×2
5
=4,
∴DC=
BD2-BC2
=2,
∵AE為直徑,
∴∠ADE=90°,
在Rt△ABC中,設(shè)⊙O的半徑為r,
∴cosA=
AD
AE
=
2
5
5

∴AD=2r•
2
5
5
=
4
5
5
r,
∴DE=
2
5
5
r,
∵DEBC,
∴DE:BC=AD:AC,即
2
5
5
r:4=
4
5
5
r:(
4
5
5
r+2),
∴r=
3
5
2
,
∴⊙O的面積=π•(
3
5
2
2=
45
4
π.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在等腰梯形ABCD中,ADBC,AB=DC,且BC=2.以CD為直徑作⊙O′交AD于點(diǎn)E,過點(diǎn)E作EF⊥AB于點(diǎn)F.建立如圖所示的平面直角坐標(biāo)系,已知A、B兩點(diǎn)坐標(biāo)分別為A(2,0)、B(0,2
3
).
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求證:EF為⊙O′的切線;
(3)將梯形ABCD繞點(diǎn)A旋轉(zhuǎn)180°到A′B′C′D′,直線CD上是否存在點(diǎn)P,使以點(diǎn)P為圓心,PD為半徑的⊙P與直線C′D′相切?如果存在,請求出P點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,線段AB與⊙O相切于點(diǎn)C,連接OA,OB,已知OA=OB=5cm,AB=8cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知一個(gè)三角形的周長和面積分別是84、210,一個(gè)單位圓在它的內(nèi)部沿著三邊勻速無摩擦地滾動(dòng)一周后回到原來的位置(如圖),則這個(gè)三角形的內(nèi)部以及邊界沒有被單位圓滾過的部分的面積是______(結(jié)果保留準(zhǔn)確值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,∠ACB=90°,∠ABC的平分線BD交AC于點(diǎn)D,DE⊥DB交AB于點(diǎn)E,過B、D、E三點(diǎn)作⊙O.
(1)求證:AC是⊙O的切線;
(2)設(shè)⊙O交BC于點(diǎn)F,連接EF,若BC=9,CA=12.求
EF
AC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(人教版)已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙O交OC于點(diǎn)D,AD的延長線交BC于點(diǎn)E,過D作⊙O的切線交BC于點(diǎn)F.下列結(jié)論:①CD2=CE•CB;②4EF2=ED•EA;③∠OCB=∠EAB;④DF=
1
2
CD.其中正確的有(  )
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AE、AD、BC分別切⊙O于E、D、F,若AD=20,則△ABC的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA、PB切⊙O于點(diǎn)A、B,點(diǎn)C是⊙O上一點(diǎn),且∠ACB=65°,則∠P等于( 。
A.65°B.130°C.50°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AC是⊙O的直徑,PA切⊙O于點(diǎn)A,點(diǎn)B是⊙O上的一點(diǎn),且∠BAC=30°,∠APB=60°.
(1)求證:PB是⊙O的切線;
(2)若⊙O的半徑為2,求弦AB及PA,PB的長.

查看答案和解析>>

同步練習(xí)冊答案