在等腰梯形ABCD中,ADBC,AB=DC,且BC=2.以CD為直徑作⊙O′交AD于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F.建立如圖所示的平面直角坐標(biāo)系,已知A、B兩點(diǎn)坐標(biāo)分別為A(2,0)、B(0,2
3
).
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求證:EF為⊙O′的切線;
(3)將梯形ABCD繞點(diǎn)A旋轉(zhuǎn)180°到A′B′C′D′,直線CD上是否存在點(diǎn)P,使以點(diǎn)P為圓心,PD為半徑的⊙P與直線C′D′相切?如果存在,請(qǐng)求出P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(1)連接CE,如圖,
∵CD是⊙O′的直徑,
∴CE⊥x軸,
∵四邊形ABCD為等腰梯形ABCD,
∵EO=BC=2,
CE=BO=2
3
,
DE=AO=2
∴DO=4,
∴C(-2,2
3
)D(-4,0);

(2)證明:連接O′E,如圖,在⊙O′中,
∵O′D=O′E,
∴∠O′DE=∠1,
在等腰梯形ABCD中,∠CDA=∠BAD
∴∠1=∠BAD
∴O′EBA
又∵EF⊥BA
∴O′E⊥EF
∴EF為⊙O′的切線.

(3)存在.理由如下:
過(guò)A作AM⊥CD于M,且交C′D′于N
∵梯形A′B′C′D′與梯形ABCD關(guān)于點(diǎn)A成中心對(duì)稱
∴C′D′CD,
∴AN⊥C′D′且AM=AN,
在Rt△CDE中,CE=2
3
,DE=2,
∴∠D=60°
在Rt△ADM中,
AM=AD•sinD=[2-(-4)]•sin60°=3
3

∴MN=6
3

設(shè)點(diǎn)P存在,則PD=MN=6
3

作PQ⊥x軸于點(diǎn)Q,
∴PQ=PD•sinD=6
3
3
2
=9,
DQ=PD•cosD=6
3
1
2
=3
3
,
①若點(diǎn)P在DC的延長(zhǎng)線上,
∴OQ=DQ-DO=3
3
-4,
∴P(3
3
-4
,9).
②若點(diǎn)P在CD的延長(zhǎng)線上,
∴OQ=3
3
+4,
∴P(-3
3
-4
,-9).
∴在直線CD上存在點(diǎn)P(3
3
-4
,9)和P(-3
3
-4
,-9),使以點(diǎn)P為圓心,PD為半徑的⊙P與直線C′D′相切.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,⊙O的半徑OC垂直弦AB于點(diǎn)H,連接BC,過(guò)點(diǎn)A作弦AEBC,過(guò)點(diǎn)C作CDBA交EA延長(zhǎng)線于點(diǎn)D,延長(zhǎng)CO交AE于點(diǎn)F.
(1)求證:CD為⊙O的切線;
(2)若BC=5,AB=8,求OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
甲:如圖,△ABC中,AB=AC,以AB為直徑作⊙O,與BC交于點(diǎn)D,過(guò)D作AC的垂線,垂足為E.
證明:(1)BD=DC;(2)DE是⊙O的切線.

乙:已知關(guān)于x的一元二次方程mx2-(2m-1)x+m-2=0(m>0).
(1)證明:這個(gè)方程有兩個(gè)不相等的實(shí)根
(2)如果這個(gè)方程的兩根分別為x1,x2,且(x1-5)(x2-5)=5m,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,等邊△ABC的周長(zhǎng)為6π,半徑是1的⊙O從與AB相切于點(diǎn)D的位置出發(fā),在△ABC外部按順時(shí)針?lè)较蜓厝切螡L動(dòng),又回到與AB相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了( 。
A.2周B.3周C.4周D.5周

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)A、B、D在⊙O上,∠A=25°,OD的延長(zhǎng)線交直線BC于點(diǎn)C,且∠OCB=40°,直線BC與⊙O的位置關(guān)系為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:射線OF交⊙O于點(diǎn)B,半徑OA⊥OB,P是射線OF上的一個(gè)動(dòng)點(diǎn)(不與O、B重合),直線AP交⊙O于D,過(guò)D作⊙O的切線交射線OF于E.
(1)圖a是點(diǎn)P在圓內(nèi)移動(dòng)時(shí)符合已知條件的圖形,請(qǐng)你在圖b中畫出點(diǎn)P在圓外移動(dòng)時(shí)符合已知條件的圖形;
(2)觀察圖形,點(diǎn)P在移動(dòng)過(guò)程中,△DPE的邊、角或形狀存在某些規(guī)律,請(qǐng)你通過(guò)觀察、測(cè)量、比較,寫出一條與△DPE的邊、角或形狀有關(guān)的規(guī)律;
(3)在點(diǎn)P移動(dòng)過(guò)程中,設(shè)∠DEP的度數(shù)為x,∠OAP的度數(shù)為y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,在△ABC中,BC=4,以點(diǎn)A為圓心,2為半徑的⊙A與BC相切于點(diǎn)D,交AB于點(diǎn)E,交AC于點(diǎn)F,且∠EAF=80°,則圖中陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB,BC分別是⊙O的直徑和弦,點(diǎn)D為
BC
上一點(diǎn),弦DE交⊙O于點(diǎn)E,交AB于點(diǎn)F,交BC于點(diǎn)G,過(guò)點(diǎn)C的切線交ED的延長(zhǎng)線于H,且HC=HG,連接BH,交⊙O于點(diǎn)M,連接MD,ME.
求證:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的圓與AC、AB分別交于D、E,且⊙O與直線BD剛好相切.
(1)試證:∠CBD=∠A;
(2)若cosA=
2
5
5
,BD=2
5
,試計(jì)算⊙O的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案