【題目】我國是一個嚴重缺水的國家 為了加強公民的節(jié)水意識, 某市制定了如下用水收費標準: 每戶每月的用水不超過 6 噸時, 水價為每噸 2 元, 超過 6 噸時, 超過的部分按每噸 3 元收費 該市某戶居民 5 月份用水噸, 應交水費

1 ,請寫出的函數(shù)關系式

2 ,請寫出的函數(shù)關系式

3 在同一坐標系下, 畫出以上兩個函數(shù)的圖象

4 如果該戶居民這個月交水費 27 元, 那么這個月該戶用了多少噸水?

【答案】(1) y=2x (2) y=3x-6 (3)如圖

(4) 11

【解析】

試題(1)根據(jù)不超過6噸時,水價為每噸2元,即可得到結果;

2)根據(jù)超過6噸時,超過的部分按每噸3元收費,即可得到結果;

3)根據(jù)描點法即可作出圖象;

4)把y=27代入(2)中的函數(shù)關系式,即可求得結果.

1)當0x≤6時,y=2x

2)當x6時,y=12+3(x6),即y=3x6

3)如圖:

4)當y=27時,3x6=27,解得x=11

答:該月用了11噸水.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(知識生成)我們已經知道,通過計算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b2a2+2ab+b2,基于此,請解答下列問題:

1)根據(jù)圖2,寫出一個代數(shù)恒等式:   

2)利用(1)中得到的結論,解決下面的問題:若a+b+c10,ab+ac+bc35,則a2+b2+c2   

3)小明同學用圖3x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個面積為(2a+b)(a+2b)長方形,則x+y+z   

(知識遷移)(4)事實上,通過計算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個邊長為x的正方體挖去一個小長方體后重新拼成一個新長方體,請你根據(jù)圖4中圖形的變化關系,寫出一個代數(shù)恒等式:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù) y=ax2+bx+c(a<0) 的圖象經過點(2,0),且其對稱軸為直線 x=1 ,則使函數(shù)值 y>0 成立的 x 的取值范圍是( )
A.x<4 或 x>2
B.4 ≤ x ≤ 2
C.x ≤ 4 或 x ≥ 2
D.4<x<2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B是數(shù)軸上的兩點.點P從原點出發(fā),以每秒2個單位的速度向點B作勻速運動;同時,點Q也從原點出發(fā)用2s到達點A處,并在A處停留1s,然后按原速度向點B運動,速度為每秒4個單位.最終,點Q比點P3s到達B處.設點P運動的時間為t s

1)點A表示的數(shù)為_________;當時,P、Q兩點之間的距離為________個單位長度;

2)求點B表示的數(shù);

3)從P、Q兩點同時出發(fā)至點P到達點B處的這段時間內,t為何值時,PQ兩點相距3個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.已知曲線是由頂點為T的二次函數(shù) 的圖象旋轉45度得到,直線AB: 交曲線于C,D兩點.
(1)線段AT長為,
(2)在y軸上有一點P,且PC+PD 為最小,則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,
(1)若半徑為1的⊙O經過點A、B、D,且∠A=60°,求此時菱形的邊長;
(2)若點P為AB上一點,把菱形ABCD沿過點P的直線a折疊,使點D落在BC邊上,利用無刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說明作法和理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課上,王老師拿出一張如圖 1 所示的長方形 紙(對邊,四個角都是直角), 要求同學們用直尺和量角器在 AB 邊上找一點 E,使

1)甲同學的做法:在邊上任取一點,以 為頂點,以 為一邊,用量角器作 角,使另外一邊經過點 C,則 即為所求.

2)乙同學的做法:以為始邊,在長方形的內部,利用量角器作,射線 交于點,則如圖 2 所示 即為所求.

你支持_______同學的做法,作圖依據(jù)是__________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖

1)若∠2=3,則 ,理由是

2)若∠3=4,則 ,理由是

3)若mn,則∠1與∠4的關系是 ,理由是

4)若∠1+2=180°,則 ,理由是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組: 并把解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習冊答案