【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,有下列結論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點E位置的改變而發(fā)生變化;
④點C到線段EF的最大距離為 .
其中正確結論的個數是( )
A.1個
B.2個
C.3個
D.4個
【答案】B
【解析】解:①連接CD;
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵AE=CF,
∴△ADE≌△CDF(SAS);
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.(故①正確);
②當E、F分別為AC、BC中點時,四邊形CDFE是正方形(故②錯誤);
③如圖2所示,分別過點D,作DM⊥AC,DN⊥BC,于點M,N,
可以利用割補法可知四邊形CEDF的面積等于正方形CMDN面積,故面積保持不變(故③錯誤);
④△DEF是等腰直角三角形, DE=EF,
當EF∥AB時,∵AE=CF,
∴E,F(xiàn)分別是AC,BC的中點,故EF是△ABC的中位線,
∴EF取最小值 =2 ,∵CE=CF=2,∴此時點C到線段EF的最大距離為 EF= .(故④正確);
故正確的有2個,
故選:B.
【考點精析】關于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】某區(qū)在實施居民用水額定管理前,對居民生活用水情況進行了調查,下表是通過簡單隨機抽樣獲得的50個家庭去年月平均用水量(單位:噸),并將調查數據進行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
頻數分布表
分組 | 劃記 | 頻數 |
2.0<x≤3.5 | 正正 | 11 |
3.5<x≤5.0 | 19 | |
5.0<x≤6.5 | ||
6.5<x≤8.0 | ||
8.0<x≤9.5 | 2 | |
合計 | 50 |
(1)把上面頻數分布表和頻數分布直方圖補充完整;
(2)從直方圖中你能得到什么信息?(寫出兩條即可);
(3)為了鼓勵節(jié)約用水,要確定一個用水量的標準,超出這個標準的部分按1.5倍價格收費,若要使60%的家庭收費不受影響,你覺得家庭月均用水量應該定為多少?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地新建的一個企業(yè),每月將生產1960噸污水,為保護環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:
污水處理器型號 | A型 | B型 |
處理污水能力(噸/月) | 240 | 180 |
已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.
(1)求每臺A型、B型污水處理器的價格;
(2)為確保將每月產生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉,得△A′BO′,點A,O旋轉后的對應點為A′,O′,記旋轉角為α.
(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點O′的坐標;
(3)在(Ⅱ)的條件下,邊OA上 的一點P旋轉后的對應點為P′,當O′P+BP′取得最小值時,求點P′的坐標(直接寫出結果即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在圖示的方格紙中,(1)畫出△ABC關于MN對稱的圖形△A1B1C1;
(2)說明△A2B2C2是由△A1B1C1經過怎樣的平移得到的?
(3)在直線MN上找一點P,使得PB+PA最短.(不必說明理由).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)發(fā)現(xiàn):
如圖1,點A為線段BC外一動點,且BC=a,AB=b.
填空:當點A位于 時,線段AC的長取得最大值,且最大值為 (用含a,b的式子表示)
(2)應用:
點A為線段BC外一動點,且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展:
如圖3,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2個A品牌和1個B品牌的計算器共需122元;購買1個A品牌和2個B品牌的計算器共需124元.
(1)求這兩種品牌計算器的單價;
(2)學校開學前夕,該商店舉行促銷活動,具體辦法如下:購買A品牌計算器按原價的九折銷售,購買B品牌計算器超出10個以上超出的部分按原價的八折銷售,設購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關于x的函數關系式;
(3)小明準備聯(lián)系一部分同學集體購買同一品牌的計算器,若購買計算器的數量超過10個,問購買哪種品牌的計算器更合算?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=6,BC=8,D、E分別是斜邊AB和直角邊CB上的點,把△ABC沿著直線DE折疊,頂點B的對應點是B′.
(1)如圖(1),如果點B′和頂點A重合,求CE的長;
(2)如圖(2),如果點B′和落在AC的中點上,求CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是正方形ABCD內一點,△CDE是等邊三角形,連接EB、EA,延長BE交邊AD點于點F.
(1)求證:△ADE≌△BCE;
(2)求∠AFB的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com