精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉,得△A′BO′,點A,O旋轉后的對應點為A′,O′,記旋轉角為α.

(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點O′的坐標;
(3)在(Ⅱ)的條件下,邊OA上 的一點P旋轉后的對應點為P′,當O′P+BP′取得最小值時,求點P′的坐標(直接寫出結果即可)

【答案】
(1)

解:如圖①,

∵點A(4,0),點B(0,3),

∴OA=4,OB=3,

∴AB= =5,

∵△ABO繞點B逆時針旋轉90°,得△A′BO′,

∴BA=BA′,∠ABA′=90°,

∴△ABA′為等腰直角三角形,

∴AA′= BA=5


(2)

解:作O′H⊥y軸于H,如圖②,

∵△ABO繞點B逆時針旋轉120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,

∴∠HBO′=60°,

在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,

∴BH= BO′= ,O′H= BH= ,

∴OH=OB+BH=3+ = ,

∴O′點的坐標為(


(3)

解:∵△ABO繞點B逆時針旋轉120°,得△A′BO′,點P的對應點為P′,

∴BP=BP′,

∴O′P+BP′=O′P+BP,

作B點關于x軸的對稱點C,連結O′C交x軸于P點,如圖②,

則O′P+BP=O′P+PC=O′C,此時O′P+BP的值最小,

∵點C與點B關于x軸對稱,

∴C(0,﹣3),

設直線O′C的解析式為y=kx+b,

把O′( , ),C(0,﹣3)代入得 ,解得

∴直線O′C的解析式為y= x﹣3,

當y=0時, x﹣3=0,解得x= ,則P( ,0),

∴OP= ,

∴O′P′=OP= ,

作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,

∴∠DP′O′=30°,

∴O′D= O′P′= ,P′D= O′D= ,

∴DH=O′H﹣O′D= = ,

∴P′點的坐標為( ,


【解析】本題考查了幾何變換綜合題:熟練掌握旋轉的性質;理解坐標與圖形性質;會利用兩點之間線段最短解決最短路徑問題;記住含30度的直角三角形三邊的關系.(1)如圖①,先利用勾股定理計算出AB=5,再根據旋轉的性質得BA=BA′,∠ABA′=90°,則可判定△ABA′為等腰直角三角形,然后根據等腰直角三角形的性質求AA′的長;(2)作O′H⊥y軸于H,如圖②,利用旋轉的性質得BO=BO′=3,∠OBO′=120°,則∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三邊的關系可計算出BH和O′H的長,然后利用坐標的表示方法寫出O′點的坐標;(3)由旋轉的性質得BP=BP′,則O′P+BP′=O′P+BP,作B點關于x軸的對稱點C,連結O′C交x軸于P點,如圖②,易得O′P+BP=O′C,利用兩點之間線段最短可判斷此時O′P+BP的值最小,接著利用待定系數法求出直線O′C的解析式為y= x﹣3,從而得到P( ,0),則O′P′=OP= ,作P′D⊥O′H于D,然后確定∠DP′O′=30°后利用含30度的直角三角形三邊的關系可計算出P′D和DO′的長,從而可得到P′點的坐標.
【考點精析】本題主要考查了線段的基本性質和含30度角的直角三角形的相關知識點,需要掌握線段公理:所有連接兩點的線中,線段最短.也可簡單說成:兩點之間線段最短;連接兩點的線段的長度,叫做這兩點的距離;線段的大小關系和它們的長度的大小關系是一致的;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了解某校學生的身高情況,隨機抽取該校若干男生、女生進行抽樣調查.已知抽取的樣本中,男生、女生人數相同,利用所得數據繪制如下統(tǒng)計表和統(tǒng)計圖(如圖20-3-2所示):

身高情況分組表(單位:cm)

組別

身高

A

x<155

B

155≤x<160

C

160≤x<165

D

165≤x<170

E

x≥170

根據圖表提供的信息,回答下列問題:

(1)樣本中,男生身高的眾數在___________,中位數在___________組;

(2)樣本中,女生身高在E組的有___________人;

(3)已知該校共有男生400人、女生380,請估計身高在160≤x<170范圍內的學生約有多少人.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且∠EAF=60°.
(1)如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數量關系;
(2)如圖2,當點E是線段CB上任意一點時(點E不與B、C重合),求證:BE=CF;
(3)如圖3,當點E在線段CB的延長線上,且∠EAB=15°時,求點F到BC的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖①,△ABC中,∠ABC、∠ACB的平分線交于O點,過O點作EF∥BCAB、AC于點E、F.試猜想EF、BE、CF之間有怎樣的關系,并說明理由.

(2)如圖,若將圖①中∠ACB的平分線改為外角∠ACD的平分線,其它條件不變,則剛才的結論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖ABC,AD平分BAC,DGBC且平分BC,DEABE,DFACF

1)求證BE=CF

2)如果AB=8,AC=6AE、BE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,有下列結論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點E位置的改變而發(fā)生變化;
④點C到線段EF的最大距離為
其中正確結論的個數是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AQ=PQ,PR=PS,PRABR,PSACS,則三個結論:①AS=ARQPAR,③△BPR≌△QPS一定正確的是( )

A. 全部正確 B. 僅①和②正確 C. 僅①正確 D. 僅①和③正確

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】商場經營的某品牌童裝,4月的銷售額為20000元,為擴大銷量,5月份商場對這種童裝打9折銷售,結果銷量增加了50件,銷售額增加了7000元.
(1)求該童裝4月份的銷售單價;
(2)若4月份銷售這種童裝獲利8000元,6月全月商場進行“六一兒童節(jié)”促銷活動.童裝在4月售價的基礎上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤比4月的利潤至少增長25%?

查看答案和解析>>

同步練習冊答案