【題目】如圖,在△BC中,AC=BC,點D、E分別是邊AB、AC的中點.延長DE到點F,使DE=EF,得四邊形ADCF.若使四邊形ADCF是正方形,則應在△ABC中再添加一個條件為_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD繞點A順時針旋轉(zhuǎn)30°得到菱形AB′C′D′,其中點C的運動路徑為 ,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn) 如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:
② 線段DE與AC的位置關系是;
②設△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關系是 .
(2)猜想論證 當△DEC繞點C旋轉(zhuǎn)到如圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究 已知∠ABC=60°,點D是角平分線上一點,BD=CD=4,DE∥AB交BC于點E(如圖4).若在射線BA上存在點F,使S△DCF=S△BDE , 請直接寫出相應的BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A, .則下列結(jié)論中不一定正確的是( )
A.BA⊥DA
B.OC∥AE
C.∠COE=2∠CAE
D.OD⊥AC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,A′C′交AB于點E.若AD=BE,則△A′DE的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習三角形知識時,發(fā)現(xiàn)如下三個有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點,ME⊥BC,垂足為E,∠AME的平分線交直線AB于點F.
(1)如圖①,M為邊AC上一點,則BD、MF的位置關系是 ;
如圖②,M為邊AC反向延長線上一點,則BD、MF的位置關系是 ;
如圖③,M為邊AC延長線上一點,則BD、MF的位置關系是 ;
(2)請就圖①、圖②、或圖③中的一種情況,給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD=4,連接BD,BD⊥CD,∠ADB=∠C.若P是BC邊上一動點,則DP長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線分別交AD于點E,F,BE,CF相交于點G.
(1)求證:BE⊥CF;
(2)若AB=a,CF=b,寫出求BE的長的思路.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com