【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線軸、軸分別交于點(diǎn)、,點(diǎn)軸負(fù)半軸上,且

1)求的值;

2)把沿軸翻折,使點(diǎn)落在軸的點(diǎn)處,點(diǎn)為線段上一點(diǎn),連接軸于點(diǎn),設(shè)點(diǎn)橫坐標(biāo)為,的面積為,求、的函數(shù)解析式(用含、的代數(shù)式表示);

3)在(2)的條件下,若,點(diǎn)的縱坐標(biāo)為,求直線的解析式.

【答案】1;(2;(3

【解析】

1)分別求出直線x軸交點(diǎn)A,與y軸交點(diǎn)B的坐標(biāo),然后表示出OAOC的長(zhǎng),從而求解;

2)過點(diǎn)軸于,過點(diǎn),由(1)可得∠ACB=60°,則∠OAC=30°,然后利用解直角三角形分別表示出PC,DN的長(zhǎng),從而求三角形面積,使問題得解;

3)連接,延長(zhǎng),使得,過點(diǎn)y軸交,通過對(duì),的判定得到,,,,然后利用平行線分線段成比例定理求得m的值,從而確定點(diǎn)D和點(diǎn)E的坐標(biāo),然后利用待定系數(shù)法求函數(shù)解析式.

解:(1)在中,當(dāng)y=0時(shí),x=;當(dāng)x=0時(shí),y=6m

∴點(diǎn)坐標(biāo),點(diǎn)坐標(biāo)

,,

中,

2)過點(diǎn)軸于,過點(diǎn)

∵點(diǎn)橫坐標(biāo)為

,

,則∠ACB=60°

∴∠OAC=30°

PHOA

,

,解得:

中,

3)連接,延長(zhǎng),使得,過點(diǎn)y軸交

由折疊性質(zhì)可知:∠ACB=DCB=60°,

∴∠QCD=60°

又因?yàn)?/span>CB=CQCD=CD

,

為等邊三角形

y

∴∠BCD=DCQ=CDK=60°

為等邊三角形

∵點(diǎn)縱坐標(biāo)為

,

CEDK

,即

解得:

∴直線AB的解析式為

當(dāng)y=0時(shí),,解得

A坐標(biāo)為

∴由折疊性質(zhì)可知,坐標(biāo)為,點(diǎn)坐標(biāo)為

設(shè)解析式為,則,解得

∴直線解析式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得_______________;

(Ⅱ)解不等式②,得_______________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來;

(Ⅳ)原不等式組的解集為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的O分別交AC、BC于點(diǎn)D、E,點(diǎn)FAC的延長(zhǎng)線上,且∠CBFCAB

1)求證:直線BFO的切線;

2)若AB5,sinBAD,求AD的長(zhǎng);

3)試探究FBFD、FA之間的關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,BABC,BD平分∠ABC

1)求證:四邊形ABCD是菱形;

2)過點(diǎn)DDEBD,交BC的延長(zhǎng)線于點(diǎn)E,若BC5,BD8,求四邊形ABED的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)為等邊外一點(diǎn),,連接,若,的面積為,則的長(zhǎng)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】年我國(guó)個(gè)人所得稅征收辦法最新規(guī)定:月收入不超過元的部分不收稅;月收入超過元但不超過元的部分征收的所得稅;月收入超過元但不超過元的部分征收的所得稅國(guó)家特別規(guī)定月收入指?jìng)(gè)人工資收入扣除專項(xiàng)附加費(fèi)后的實(shí)際收入(專項(xiàng)附加費(fèi)就是子女教育費(fèi)用、住房貸款利息費(fèi)用、租房的租金、贍養(yǎng)老人、大病醫(yī)療費(fèi)用等費(fèi)用).如某人月工資收入元,專項(xiàng)附加費(fèi)支出元,他應(yīng)繳納個(gè)人所得稅為:(元).

1)當(dāng)月收入超過元而又不超過元時(shí),寫出應(yīng)繳納個(gè)人所得稅(元)與月收入(元)之間的關(guān)系式;

2)如果某人當(dāng)月專項(xiàng)附加費(fèi)支出元,繳納個(gè)人所得稅元,那么此人本月工資是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在銳角三角形ABC中,AB8,AC5,BC6,沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,下列結(jié)論:①∠CBD=∠EBD,②DEAB,③三角形ADE的周長(zhǎng)是7,④,⑤.其中正確的個(gè)數(shù)有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn),均在格點(diǎn)上,點(diǎn)是在直線上的動(dòng)點(diǎn),連,點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).

1)在圖①中,當(dāng)(點(diǎn)在點(diǎn)的左側(cè))時(shí),計(jì)算的值等于______.

2)當(dāng)取得最小值時(shí),請(qǐng)?jiān)谌鐖D②所示的網(wǎng)格中,用無刻度的直尺畫出點(diǎn),并簡(jiǎn)要說明點(diǎn)的位置是如何找到的.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片OABC放在平面直角坐標(biāo)系中,0為坐標(biāo)原點(diǎn),點(diǎn)A在y軸上,點(diǎn)C在x軸上,點(diǎn)B的坐標(biāo)是(8,6),點(diǎn)P是邊AB上的一個(gè)動(dòng)點(diǎn),將△OAP沿OP折疊,使點(diǎn)A落在點(diǎn)Q處.

(1)如圖①,當(dāng)點(diǎn)Q恰好落在OB上時(shí).求點(diǎn)p的坐標(biāo);

(2)如圖②,當(dāng)點(diǎn)P是AB中點(diǎn)時(shí),直線OQ交BC于M點(diǎn).

①求證:MB=MQ;②求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案