【題目】我國是一個嚴重缺水的國家.為了加強公民的節(jié)水意識,某市制定了如下用水收費標(biāo)準(zhǔn):每戶每月的用水不超過6噸時,水價為每噸2元,超過6噸時,超過的部分按每噸3元收費.該市某戶居民5月份用水x噸,應(yīng)交水費y元.

1)若0x≤6,請寫出yx的函數(shù)關(guān)系式.

2)若x6,請寫出yx的函數(shù)關(guān)系式.

3)在同一坐標(biāo)系下,畫出以上兩個函數(shù)的圖象.

4)如果該戶居民這個月交水費27元,那么這個月該戶用了多少噸水?

【答案】1)當(dāng)0x6y2x;(2)當(dāng)x6, y3x6;(3)如圖所示;見解析;(4)這個月該戶用了11噸水.

【解析】

1)根據(jù)水費等于單價乘以數(shù)量列式即可;

2)根據(jù)水費等于單價乘以數(shù)量,分兩個部分列式整理即可;

3)根據(jù)一次函數(shù)圖象的作法作出即可;

4)把y27代入函數(shù)關(guān)系式計算即可得解.

1)當(dāng)0x≤6,y2x;

2)當(dāng)x6,y2×6+3x6)=3x6,

y3x6;

3)如圖所示;

4∵2712

該戶用水量超過6噸,

∴3x627,

解得x11

答:這個月該戶用了11噸水.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凸四邊形的四個頂點滿足:每一個頂點到其他三個頂點距離之積都相等.則四邊形一定是(

A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△DEF中,滿足AB=DE,∠B=∠E,如果要判定這兩個三角形全等,那么添加的條件不正確的是( )

A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DEACAB分別交于點D和點E

1作出邊AC的垂直平分線DE;

2)當(dāng)AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在直角坐標(biāo)系內(nèi)的位置如圖所示.

(1)分別寫出A、B、C的坐標(biāo);

(2)請在這個坐標(biāo)系內(nèi)畫出A1B1C1,使A1B1C1ABC關(guān)于y軸對稱,并寫出B1的坐標(biāo);

(3)請在這個坐標(biāo)系內(nèi)畫出A2B2C2,使A2B2C2ABC關(guān)于原點對稱,并寫出A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的面積為,對角線,交于點,點,,分別是,的中點,連接,,得到菱形;點,,,分別是,的中點,連接,,得到菱形;…,依此類推,則菱形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形的對角線交于點,把邊分別繞點、同時逆時針旋轉(zhuǎn)得四邊形,其對角線交點為,連接.下列結(jié)論:

四邊形為菱形;

;

線段的長為;

運動到點的路徑是線段.其中正確的結(jié)論共有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知ABC中, BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BDAE于D, CEAE于E.

(1)求證: BD=DE+CE.

(2)若直線AE繞A點旋轉(zhuǎn)到圖位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請給予證明;

(3)若直線AE繞A點旋轉(zhuǎn)到圖位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請直接寫出結(jié)果, 不需證明.

(4)根據(jù)以上的討論,請用簡潔的語言表達BD與DE,CE的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次出數(shù)的圖象與軸交于點、,與軸的正半軸的交點在的下方,則,②,③,④,其中正確的個數(shù)為(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案