【題目】如圖,以BC為底邊的等腰△ABC,點D,E,G分別在BC,AB,AC上,且EG∥BC,DE∥AC,延長GE至點F,使得BE=BF.

(1)求證:四邊形BDEF為平行四邊形;
(2)當(dāng)∠C=45°,BD=2時,求D,F(xiàn)兩點間的距離.

【答案】
(1)證明:∵△ABC是等腰三角形,

∴∠ABC=∠C,

∵EG∥BC,DE∥AC,

∴∠AEG=∠ABC=∠C,四邊形CDEG是平行四邊形,

∴∠DEG=∠C,

∵BE=BF,

∴∠BFE=∠BEF=∠AEG=∠ABC,

∴∠F=∠DEG,

∴BF∥DE,

∴四邊形BDEF為平行四邊形;


(2)解:∵∠C=45°,

∴∠ABC=∠BFE=∠BEF=45°,

∴△BDE、△BEF是等腰直角三角形,

∴BF=BE= BD=

作FM⊥BD于M,連接DF,如圖所示:

則△BFM是等腰直角三角形,

∴FM=BM= BF=1,

∴DM=3,

在Rt△DFM中,由勾股定理得:DF= = ,

即D,F(xiàn)兩點間的距離為


【解析】(1)要證四邊形BDEF為平行四邊形由已知EG∥BC,須證BF∥DE,可利用等腰三角形的性質(zhì)先證四邊形CDEG是平行四邊形,得出∠DEG=∠C,再通過轉(zhuǎn)化證出BF∥DE;(2)要求DF距離須把DF放在直角三角形中,因此需過F作BD的垂線構(gòu)造直角三角形,可證出△BDE、△BEF是等腰直角三角形,由BD求出DE,進(jìn)而求出BF、MF,由勾股定理求出DF.
【考點精析】本題主要考查了等腰三角形的性質(zhì)和平行四邊形的判定與性質(zhì)的相關(guān)知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿BE→ED→DC運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是1cm/s,設(shè)P、Q出發(fā)t秒時,△BPQ的面積為y(cm2),已知y與t的函數(shù)關(guān)系的圖象如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:
①AD=BE=5cm;②當(dāng)0<t≤5時,y= t2;③直線NH的解析式為y=﹣ t+27;④若△ABE與△QBP相似,則t= 秒,
其中正確結(jié)論的個數(shù)為( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動“龍江經(jīng)濟帶”建設(shè),我省某蔬菜企業(yè)決定通過加大種植面積、增加種植種類,促進(jìn)經(jīng)濟發(fā)展.2017年春,預(yù)計種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數(shù)),青椒的種植面積是西紅柿種植面積的2倍,經(jīng)預(yù)算,種植西紅柿的利潤可達(dá)1萬元/公頃,青椒1.5萬元/公頃,馬鈴薯2萬元/公頃,設(shè)種植西紅柿x公頃,總利潤為y萬元.
(1)求總利潤y(萬元)與種植西紅柿的面積x(公頃)之間的關(guān)系式.
(2)若預(yù)計總利潤不低于180萬元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過獲得最大利潤的 在冬季同時建造A、B兩種類型的溫室大棚,開辟新的經(jīng)濟增長點,經(jīng)測算,投資A種類型的大棚5萬元/個,B種類型的大棚8萬元/個,請直接寫出有哪幾種建造方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.

求證:∠C=∠D.

證明:因為∠1=∠2(已知),∠1=∠3( )

得∠2=∠3( )

所以AE//_______( )

得∠4=∠F( )

因為__________(已知)

得∠4=∠A

所以______//_______( )

所以∠C=∠D( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點D是直線BC上一點(不與BC重合),以AD為一邊在AD的右側(cè)作ADE,使AD=AE,DAE=BAC,連接CE

1)如圖一,若ABC是等邊三角形,且AB=AC=2,D在線段BC上,

①求證:∠BCE+BAC=180°;

②當(dāng)四邊形ADCE的周長取最小值時,求BD的長.

2)若∠BAC60° ,當(dāng)點D射線BC上移動,則∠BCE和∠BAC 之間有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知4m=a,8n=b,用含a,b的式子表示下列代數(shù)式①求:22m+3n的值,

②求:24m6n的值;

2)已知2×8x×16=223,x的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,如圖,已知Rt△DOE,∠DOE=90°OD=3,點Dy軸上,點Ex軸上,在△ABC中,點A,Cx軸上,AC=5∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):

1)將△ODEO點按逆時針方向旋轉(zhuǎn)90°得到△OMN(其中點D的對應(yīng)點為點M,點E的對應(yīng)點為點N),畫出△OMN;

2)將△ABC沿x軸向右平移得到△A′B′C′(其中點A,B,C的對應(yīng)點分別為點A′B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;

3)求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右依次記為A1、A2、A3、…、An,已知第1個正方形中的一個頂點A1的坐標(biāo)為(1,1),則點A2019的縱坐標(biāo)為( )

A. 2019 B. 2018 C. 22018 D. 22019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC 中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ABE繞點順時針旋轉(zhuǎn)90后,得到△ACF,連接DF.下列結(jié)論中:①∠DAF=45° ②△≌△ AD平分∠EDF 正確的有______________(填序號)

查看答案和解析>>

同步練習(xí)冊答案