【題目】在平面直角坐標系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點D在y軸上,點E在x軸上,在△ABC中,點A,C在x軸上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):
(1)將△ODE繞O點按逆時針方向旋轉(zhuǎn)90°得到△OMN(其中點D的對應(yīng)點為點M,點E的對應(yīng)點為點N),畫出△OMN;
(2)將△ABC沿x軸向右平移得到△A′B′C′(其中點A,B,C的對應(yīng)點分別為點A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;
(3)求OE的長.
【答案】(1)作圖見解析;(2)作圖見解析;(3)6.
【解析】
試題(1)以點O為圓心,以OE為半徑畫弧,與y軸正半軸相交于點M,以OD為半徑畫弧,與x軸負半軸相交于點N,連接MN即可.
(2)以M為圓心,以AC長為半徑畫弧與x軸負半軸相交于點A′,B′與N重合,C′與M重合,然后順次連接即可.
(3)設(shè)OE=x,則ON=x,作MF⊥A′B′于點F,判斷出B′C′平分∠A′B′O,再根據(jù)角平分線上的點到角的兩邊距離相等和角平分線的對稱性可得B′F=B′O=OE=x,F C′="O" C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.
試題解析:解:(1)△OMN如圖所示.
(2)△A′B′C′如圖所示.
(3)設(shè)OE=x,則ON=x,如答圖,過點M作MF⊥A′B′于點F,
由作圖可知:B′C′平分∠A′B′O,且C′O⊥O B′,
∴B′F=B′O=OE=x,F C′="O" C′=OD=3,
∵A′C′=AC=5,∴.∴A′B′=x+4,A′O=5+3=8.
在Rt△A′B′O中,,解得x=6.
∴OE=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一條東西走向的河流,在河流對岸有一點A,小明在岸邊點B處測得點A在點B的北偏東30°方向上,小明沿河岸向東走80m后到達點C,測得點A在點C的北偏西60°方向上,則點A到河岸BC的距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以BC為底邊的等腰△ABC,點D,E,G分別在BC,AB,AC上,且EG∥BC,DE∥AC,延長GE至點F,使得BE=BF.
(1)求證:四邊形BDEF為平行四邊形;
(2)當∠C=45°,BD=2時,求D,F(xiàn)兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的表達式為y=x2+mx+n.
(1)若這個二次函數(shù)的圖象與x軸交于點A(1,0),點B(3,0),求實數(shù)m,n的值;
(2)若△ABC是有一個內(nèi)角為30°的直角三角形,∠C為直角,sinA,cosB是方程x2+mx+n=0的兩個根,求實數(shù)m,n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓O,∠BAD=90°,AC為直徑,過點A作圓O的切線交CB的延長線于點E,過AC的三等分點F(靠近點C)作CE的平行線交AB于點G,連結(jié)CG.
(1)求證:AB=CD;
(2)求證:CD2=BEBC;
(3)當CG= ,BE= 時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,E是直線AB,CD內(nèi)部一點,AB∥CD,連接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED= °
②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.
(2)拓展應(yīng)用:
如圖②,射線FE與l1,l2交于分別交于點E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一條直線上從左往右依次有A、B、C、D四個點.
(1)如果線段AC、BC、BD的長分別為3a-b、a+b、4a-2b,試求A、D兩點間的距離;
(2)如果將這條直線看作是以點C為原點的數(shù)軸(向右為正方向).
①直接寫出數(shù)軸上與點B距離為a+2b的點所表示的數(shù)______;
②設(shè)線段BD上一動點P所表示的數(shù)為x,求|x+a+b|+|x-3a+3b|的值(用含a、b的代數(shù)表示);
③線段BD上有兩個動點P、M,點P所表示的數(shù)為x,點M所表示的數(shù)為y,直接寫出式子|x-y|+|x+a+b|+|x-y-6a+4b|的最小值______(用含a、b的代數(shù)表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)解不等式組,并在數(shù)軸上表示出解集:
①
②
(2)分解因式:
①x(x﹣y)﹣y(y﹣x)
②﹣12x3+12x2y﹣3xy2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com