【題目】為節(jié)約能源,優(yōu)化電力資源配置,提高電力供應(yīng)的整體效益,國家實行了錯峰用電.某地區(qū)的居民用電,按白天時段和晚間時段規(guī)定了不同的單價.某戶5月份白天時段用電量比晚間時段用電量多,6月份白天時段用電量比5月份白天時段用電量少,結(jié)果6月份的總用電量比5月份的總用電量多,但6月份的電費卻比5月份的電費少,則該地區(qū)晚間時段居民用電的單價比白天時段的單價的百分數(shù)為(

A.B.C.D.

【答案】B

【解析】

分別假設(shè)出白天的單價為每度a元,晚間的單價比白天低的百分數(shù)為x,可以表示出晚間的單價,這樣可以表示出5,6月份的白天與晚間電費,即可列出方程,求出未知數(shù)即可.

設(shè)白天的單價為每度a元,晚間的單價比白天低的百分數(shù)為x,

即晚間的單價為每度(1x)a元,又設(shè)5月份晚間用電量為n度,則:

5月份白天用電量為:(1+50%)=1.5n度,

5月份電費為:1.5na+(1x)na=(2.5x)na元,

6月份白天用電量為:1.5n(160%)=0.6n度,

6月份晚間用電量為:(n+1.5n)(1+20%)0.6n=2.4n度,

6月份電費為:0.6na+2.4(1x)na=(32.4x)na元,

根據(jù)題意得:(32.4x)na=(2.5x)(110%)na.

整理得:1.5x=0.75,

解得:x=0.5=50%.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為2的正方形ABCD與邊長為2 的正方形AEFG按圖1位置放置,ADAE在同一直線上,ABAG在同一直線上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)如圖(2),線段DG與線段BE相交,交點為H,則△GHE與△BHD面積之和的最大值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點,連接EF,點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時,點Q從點D出發(fā),沿DB方向勻速運動,速度為2cm/s,當(dāng)點P停止運動時,點Q也停止運動.連接PQ,設(shè)運動時間為t(0<t<4)s,解答下列問題:

(1)求證:△BEF∽△DCB;

(2)當(dāng)點Q在線段DF上運動時,若△PQF的面積為0.6cm2,求t的值;

(3)如圖2過點QQG⊥AB,垂足為G,當(dāng)t為何值時,四邊形EPQG為矩形,請說明理由;

(4)當(dāng)t為何值時,△PQF為等腰三角形?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個小正方形的邊長是1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);

(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點E在正方形邊上(不與點B,C重合),是對角線,延長到點F,使,過點E的垂線,垂足為G,連接

1)根據(jù)題意補全圖形,并證明

2用等式表示線段的數(shù)量關(guān)系,并證明;

用等式表示線段,之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)癮低齡化問題已引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,得到了如圖所示的兩個不完全統(tǒng)計圖.

請根據(jù)圖中的信息,解決下列問題:

)求條形統(tǒng)計圖中的值.

)求扇形統(tǒng)計圖中歲部分所占的百分比;

)據(jù)報道,目前我國歲網(wǎng)癮人數(shù)約為萬,請估計其中歲的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】城市規(guī)劃期間,欲拆除一電線桿AB,已知距電線桿AB水平距離14 mD處有一大壩,背水坡CD的坡度i=12,壩高CF2 m,在壩頂C處測得桿頂A的仰角為30°,D、E之間是寬為2 m的人行道.

(1)BF的長;

(2)在拆除電線桿AB時,為確保行人安全,是否需要將此人行道封上?請說明理由.(在地面上,以點B為圓心,以AB長為半徑的圓形區(qū)域為危險區(qū)域,≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.

探究一:如圖1.在△ABC中,已知OABCACB的平分線BOCO的交點,通過分析發(fā)現(xiàn).理由如下:

BOCO分別是ABC與∠ACB的平分線,

,

,

1)探究二:如圖2中,已知OABC與外角ACD的平分線BOCO的交點,試分析BOCA有怎樣的關(guān)系?并說明理由.

2)探究二:如圖3中,已知O是外角DBC與外角ECB的平分線BOCO的交點,試分析BOCA有怎樣的關(guān)系?

查看答案和解析>>

同步練習(xí)冊答案