【題目】如圖,直線l過點(diǎn)A(4,0)和點(diǎn)B(0,4),它與二次函數(shù)y=ax2+2的圖象交于點(diǎn)P,若△AOP的面積為,求二次函數(shù)的表達(dá)式.
【答案】
【解析】
設(shè)l的解析式為y=kx+b,將(4,0),(0,4)代入,根據(jù)待定系數(shù)法解答;根據(jù)△OAP的面積和P在直線上,可求出P點(diǎn)坐標(biāo),將P點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+2,列方程求出a值即可.
解:如圖,連接OP,設(shè)直線l的解析式為y=kx+b,
∵直線l與兩坐標(biāo)軸分別交于點(diǎn)A(4,0),B(0,4),代入y=kx+b中得:
,解得k=-1,b=4,
∴直線l的函數(shù)表達(dá)式為y=x+4,
設(shè)點(diǎn)P的坐標(biāo)為(m,4m),
∵△AOP的面積為,
∴,
解得m=,
∴點(diǎn)P為,
將P點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+2得:,
解得:,
∴,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了方便游客觀賞景點(diǎn),某景區(qū)設(shè)計建造了如圖所示的高為6米的觀景臺,且坡面的坡度比為1:1.后來為了方便行人推車(如子女帶老人旅游等),決定降低坡度,新坡面的坡度比為.
(1)求新坡面的坡角.
(2)原坡面底部的正前方13米(的長)有一座古建筑,為保護(hù)文物,當(dāng)?shù)匚奈锕芾聿块T規(guī)定,坡面底部至少距古建筑7米,請問新的設(shè)計方案能否通過,試說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)P為直線BD上方拋物線上一點(diǎn),若,請求出點(diǎn)P的坐標(biāo).
(3)如圖3,M為線段AB上的一點(diǎn),過點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,若△DNM∽△BMD,請求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將Rt△AOB繞著直角頂點(diǎn)O按逆時針方向旋轉(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過C、D、B三點(diǎn).
(1)該拋物線的解析式為 ;
(2)設(shè)點(diǎn)E是拋物線上位于第一象限的動點(diǎn),過點(diǎn)E作EF⊥x軸于點(diǎn)F,并交直線AB于N,過點(diǎn)E再作EM⊥AB于點(diǎn)M,求△EMN周長的最大值;
(3)當(dāng)△EMN的周長最大時,在直線EF上是否存在點(diǎn)Q,使得△QCD是以CD為直角邊的直角三角形?若存在請求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因為,即,所以我們對比函數(shù)來探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | … | ||||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:
(1)請把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當(dāng)時,隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個單位而得到的;
③圖象關(guān)于點(diǎn)______中心對稱.(填點(diǎn)的坐標(biāo))
(3)函數(shù)與直線交于點(diǎn),,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品的每天利潤為y元[
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是圓上一點(diǎn),弦于點(diǎn),且.過點(diǎn)作的切線,過點(diǎn)作的平行線,兩直線交于點(diǎn),的延長線交的延長線于點(diǎn).
(1)求證:與相切;
(2)連接,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個電線桿,某人在河岸MN上的A處測得∠DAB=30°,然后沿河岸走了100m到達(dá)B處,測得∠CBF=70°,求河流的寬度(結(jié)果精確到個位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com