將一個(gè)等腰直角三角板放在坐標(biāo)系中,如圖所示,三個(gè)頂點(diǎn)坐標(biāo)分別是A(0,2),B(2,1),C(1,-1),將三角板繞A點(diǎn)順時(shí)針轉(zhuǎn)α°后,使B點(diǎn)與x軸上的點(diǎn)D(-1,0)重合.
(1)寫(xiě)出點(diǎn)E的坐標(biāo)和α的值(直接寫(xiě)出結(jié)果);
(2)求出過(guò)B,C,E三點(diǎn)的拋物線的解析式;
(3)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使△PAD是以AD為腰的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
(1)E(-3,1)α=90
(2)設(shè)拋物線的解析式為:y=ax2+bx+c根據(jù)題意得:
9a-3b+c=1
a+b+c=-1
4a+2b+c=1

解得:
a=
1
2
b=
1
2
c=-2

∴解析式為:y=
1
2
x2+
1
2
x-2
(3)存在
①設(shè)拋物線的對(duì)稱(chēng)軸于x軸交于點(diǎn)F,以D點(diǎn)為圓心,以AD為半徑畫(huà)弧,交對(duì)稱(chēng)軸于P1,P2,
∵拋物線y=
1
2
x2+
1
2
x-2的對(duì)稱(chēng)軸為x=-
1
2

∴DF=1-
1
2
=
1
2

∵在Rt△ADO中,OA=2,OD=1
∴AD=
22+1
=
5

∴FP1=
(
5
)2-(
1
2
)2
=
19
2

∴P1(-
1
2
,
19
2

∵點(diǎn)P1與點(diǎn)P2關(guān)于x軸對(duì)稱(chēng)
∴P2(-
1
2
,-
19
2

②以A為圓心,以AD為半徑畫(huà)弧交x軸與P3,P4,
過(guò)A作AM垂直對(duì)稱(chēng)軸于M,同理可求得P3M=P4M=
19
2

∴FP3=FM+MP3=2+
19
2

∴P3(-
1
2
,2+
19
2

FP4=MP4-FM=
19
2
-2
∴P4(-
1
2
,2-
19
2

綜上所述,點(diǎn)P的坐標(biāo)分別為P1(-
1
2
,
19
2
)、P2(-
1
2
,-
19
2
)、P3(-
1
2
,2+
19
2
)、P4(-
1
2
,2-
19
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=
2
3
x2
的圖象如圖,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1,A2,A3…An在y軸的正半軸上,點(diǎn)B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An-1BnAnCn都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠An-1BnAn=60°,菱形An-1BnAnCn的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)拋物線y=ax2+ax-2經(jīng)過(guò)點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱(chēng)軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ為正方形?若存在,求點(diǎn)P、Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖象以A(-1,4)為頂點(diǎn),且過(guò)點(diǎn)B(2,-5)
①求該函數(shù)的關(guān)系式;
②求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);
③將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過(guò)原點(diǎn)時(shí),A、B兩點(diǎn)隨圖象移至A′、B′,求△OA′B′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一座拋物線拱橋架在一條河流上,這座拱橋下的水面離橋孔頂部3m時(shí),水面寬6m,當(dāng)水位上升1m時(shí),水面寬多少m(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

根據(jù)條件求二次函數(shù)的解析式:
(1)拋物線過(guò)(-1,-22),(0,-8),(2,8)三點(diǎn);
(2)有一個(gè)拋物線形拱橋,其最大高度為16m,跨度為40m,現(xiàn)把它的示意圖放在平面直角坐標(biāo)系中如圖,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將二次函數(shù)y=2x2-8x-5的圖象沿它的對(duì)稱(chēng)軸所在直線向上平移,得到一條新的拋物線,這條新的拋物線與直線y=kx+1有一個(gè)交點(diǎn)為(3,4).
求:(1)新拋物線的解析式及后的值;
(2)新拋物線與y=kx+1的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=
3
5
x-4分別交x、y軸于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求B點(diǎn)的坐標(biāo);
(2)若D是OA中點(diǎn),過(guò)A的直線l(3)把△AOB分成面積相等的兩部分,并交y軸于點(diǎn)C.
①求過(guò)A、C、D三點(diǎn)的拋物線的函數(shù)解析式;
②把①中的拋物線向上平移,設(shè)平移后的拋物線與x軸的兩個(gè)交點(diǎn)分別為M、N,試問(wèn)過(guò)M、N、B三點(diǎn)的圓的面積是否存在最小值?若存在,求出圓的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某玩具廠授權(quán)生產(chǎn)工藝品福娃,每日最高產(chǎn)量為30只,且每日生產(chǎn)的產(chǎn)品全部出售.已知生產(chǎn)x只福娃的成本為R(元),每只售價(jià)P(元),且R,P與x的表達(dá)式分別為R=50+3x,P=170-2x.當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案