如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)M(1,0)和N(3,0)兩點(diǎn),且與y軸交于D(0,3),直線l是拋物線的對(duì)稱(chēng)軸.
(1)求該拋物線的解析式.
(2)若過(guò)點(diǎn)A(-1,0)的直線AB與拋物線的對(duì)稱(chēng)軸和x軸圍成的三角形面積為6,求此直線的解析式.
(3)點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,⊙P與直線AB和x軸都相切,求點(diǎn)P的坐標(biāo).
(1)∵拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)M(1,0)和N(3,0)兩點(diǎn),且與y軸交于D(0,3),
∴假設(shè)二次函數(shù)解析式為:y=a(x-1)(x-3),
將D(0,3),代入y=a(x-1)(x-3),
得:3=3a,∴a=1,
∴拋物線的解析式為:y=a(x-1)(x-3)=x2-4x+3;

(2)∵過(guò)點(diǎn)A(-1,0)的直線AB與拋物線的對(duì)稱(chēng)軸和x軸圍成的三角形面積為6,
1
2
AC×BC=6,
∵拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)M(1,0)和N(3,0)兩點(diǎn),
∴二次函數(shù)對(duì)稱(chēng)軸為x=2,
∴AC=3,
∴BC=4,
∴B點(diǎn)坐標(biāo)為:(2,4)或(2,-4),
一次函數(shù)解析式為;y=kx+b,當(dāng)點(diǎn)B為(2,4)時(shí),
4=2k+b
0=-k+b

解得:
k=
4
3
b=
4
3
,
y=
4
3
x+
4
3

當(dāng)點(diǎn)B為(2,-4)時(shí),
-4=2k+b
0=-k+b
,
解得
k=-
4
3
b=-
4
3
,
y=-
4
3
x-
4
3

∴直線AB的解析式為:y=
4
3
x+
4
3
y=-
4
3
x-
4
3
;

(3)∵當(dāng)點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,⊙P與直線AB和x軸都相切,
設(shè)⊙P與AB相切于點(diǎn)Q,與x軸相切于點(diǎn)C;
∴PQ⊥AB,AQ=AC,PQ=PC,
∵AC=1+2=3,BC=4,
∴AB=5,AQ=3,
∴BQ=2,
∵∠QBP=∠ABC,
∠BQP=∠ACB,
∴△ABC△PBQ,
BQ
BC
=
PQ
AC
=
PC
AC

2
4
=
PC
3
,
∴PC=1.5,
P點(diǎn)坐標(biāo)為:(2,1.5),
同理可得(2,-1•5),(2,-6),(2,6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,其中圖象與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,-5),且經(jīng)過(guò)點(diǎn)D(3,-8).
(1)求此二次函數(shù)的解析式;
(2)將此二次函數(shù)的解析式寫(xiě)成y=a(x-h)2+k的形式,并直接寫(xiě)出此二次函數(shù)圖象的頂點(diǎn)坐標(biāo)以及它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值;
(2)求點(diǎn)B的坐標(biāo);
(3)該二次函數(shù)圖象上有一點(diǎn)D(x,y)(其中x>0,y>0)使S△ABD=S△ABC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線的頂點(diǎn)為A(2,1),且經(jīng)過(guò)原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.
(1)求拋物線的解析式;
(2)在拋物線上求點(diǎn)M,使△MOB的面積是△AOB面積的3倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:AC是⊙O的直徑,點(diǎn)A、B、C、O在⊙O1上,OA=2.建立如圖所示的直角坐標(biāo)系.∠ACO=∠ACB=60度.
(1)求點(diǎn)B關(guān)于x軸對(duì)稱(chēng)的點(diǎn)D的坐標(biāo);
(2)求經(jīng)過(guò)三點(diǎn)A、B、O的二次函數(shù)的解析式;
(3)該拋物線上是否存在點(diǎn)P,使四邊形PABO為梯形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

今有網(wǎng)球從斜坡O點(diǎn)處拋出,網(wǎng)球的拋物線是y=4x-
1
2
x2
的圖象的一段,斜坡的截線OA在一次函數(shù)y=
1
2
x
的圖象的一段,建立如圖所示的直角坐標(biāo)系.
求:(1)網(wǎng)球拋出的最高點(diǎn)的坐標(biāo).
(2)網(wǎng)球在斜坡的落點(diǎn)A的垂直高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn),直線BD的函數(shù)表達(dá)式為y=-
3
x+3
3
,拋物線的對(duì)稱(chēng)軸l與直線BD交于點(diǎn)C、與x軸交于點(diǎn)E.
(1)求A、B、C三個(gè)點(diǎn)的坐標(biāo);
(2)點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),以點(diǎn)A為圓心、以AP為半徑的圓弧與線段AC交于點(diǎn)M,以點(diǎn)B為圓心、以BP為半徑的圓弧與線段BC交于點(diǎn)N,分別連接AN、BM、MN.
①求證:AN=BM;
②在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,四邊形AMNB的面積有最大值還是有最小值?并求出該最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

物業(yè)管理部門(mén)為了美化環(huán)境,在小區(qū)靠墻1五側(cè)設(shè)計(jì)了五處長(zhǎng)方形花圃(墻長(zhǎng)25n),三邊外圍用籬笆圍起,栽上蝴蝶花,共用籬笆x0n,
(1)設(shè)花圃1寬為x米,請(qǐng)你用含x1代數(shù)式表示花圃1長(zhǎng);
(2)花圃1面積能達(dá)到200n2嗎?
(b)花圃1面積能達(dá)到250n2嗎?如果能,請(qǐng)你給出設(shè)計(jì)方案;如果不能,請(qǐng)說(shuō)明理由.
(x)你能根據(jù)所學(xué)過(guò)1知識(shí)求出花圃1最大面積嗎?此時(shí),籬笆該怎樣圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某通訊器材公司銷(xiāo)售一種市場(chǎng)需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價(jià)為40元,每年銷(xiāo)售該種產(chǎn)品的總開(kāi)支(不含進(jìn)價(jià))總計(jì)120萬(wàn)元.在銷(xiāo)售過(guò)程中發(fā)現(xiàn),年銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)試寫(xiě)出該公司銷(xiāo)售該種產(chǎn)品的年獲利z(萬(wàn)元)關(guān)于銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系式(年獲利=年銷(xiāo)售額一年銷(xiāo)售產(chǎn)品總進(jìn)價(jià)一年總開(kāi)支).當(dāng)銷(xiāo)售單價(jià)x為何值時(shí),年獲利最大并求這個(gè)最大值;
(3)若公司希望該種產(chǎn)品一年的銷(xiāo)售獲利不低于40萬(wàn)元,借助(2)中函數(shù)的圖象,請(qǐng)你幫助該公司確定銷(xiāo)售單價(jià)的范圍.在此情況下,要使產(chǎn)品銷(xiāo)售量最大,你認(rèn)為銷(xiāo)售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案