物業(yè)管理部門為了美化環(huán)境,在小區(qū)靠墻1五側設計了五處長方形花圃(墻長25n),三邊外圍用籬笆圍起,栽上蝴蝶花,共用籬笆x0n,
(1)設花圃1寬為x米,請你用含x1代數(shù)式表示花圃1長;
(2)花圃1面積能達到200n2嗎?
(b)花圃1面積能達到250n2嗎?如果能,請你給出設計方案;如果不能,請說明理由.
(x)你能根據(jù)所學過1知識求出花圃1最大面積嗎?此時,籬笆該怎樣圍?
(p)設花圃的寬為x米,則花圃的長為43-2x;

(2)設花圃的墻寬x米,花圃面積為233平方米,據(jù)題意,上
x(43-2x)=233,
解上x=p3,
花圃的寬為p3米時,花圃的面積能達到233m2

(3)設花圃的墻長x米,花圃面積為243平方米,據(jù)題意,上
x(43-2x)=243,
即2x2-43x+243=3,
△=b2-4ac=pn33-4×2×243=-433<3,
因此花圃的面積不能達到243m2

(4)設花圃的墻長x米,花圃面積為地平方米,
據(jù)題意,上地=x(43-2x)=-2x2+43x,
當x=-
b
2a
=-
43
2×(-2)
=p3時,花圃面積最大;
即花圃的寬為p3m,長為23m.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

(1)將拋物線y1=2x2向右平移2個單位,得到拋物線y2的圖象,則y2=______;
(2)如圖,P是拋物線y2對稱軸上的一個動點,直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點A、B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的圖象經過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),直線l是拋物線的對稱軸.
(1)求該拋物線的解析式.
(2)若過點A(-1,0)的直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,求此直線的解析式.
(3)點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△OAB的斜邊OA在x軸的正半軸上,直角的頂點B在第一象限內,已知點A(10,0),△OAB的面積為20.
(1)求B點的坐標;
(2)求過O、B、A三點拋物線的解析式;
(3)判斷該拋物線的頂點P與△OAB的外接圓的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-
1
2
x2
+bx+c的圖象經過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[2,k-2]的一次函數(shù)為正比例函數(shù),求k的值;
(2)設點A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點,其中m>0,且△OAB的面積為4,O為原點,求圖象過A,B兩點的一次函數(shù)的特征數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,在平面直角坐標系中,已知△ABC是等邊三角形,點B的坐標為(12,0),動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在x軸上.
(1)當t為何值時,點M與點O重合;
(2)求點P坐標和等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在△AOB內部作如圖②所示的矩形ODEF,點E在線段AB上.設等邊△PMN和矩形ODEF重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有鋁合金窗框料8米,準備用它做一個如圖所示的長方形窗架,一般來說,當窗戶總面積最大時,窗戶的透光最好.那么,要使這個窗戶透光最好,窗架的寬應為多少米此時窗戶的總面積是多少平方米?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿的市場售價與上市時間的關系用圖一的一條折線表示;西紅柿的種植成本與上市時間的關系用圖二的拋物線段表示.

(1)寫出圖一表示的市場售價與時間的函數(shù)關系式P;寫出圖二表示的種植成本與時間的函數(shù)關系式Q;
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?

查看答案和解析>>

同步練習冊答案