【題目】
(1)解方程:
(2)解不等式:2(x﹣6)+4≤3x﹣5,并將它的解集在數(shù)軸上表示出來(lái).

【答案】
(1)解:去分母得:x=3(x﹣3),

解得:x= ,

檢驗(yàn):x= 時(shí),x(x﹣3)≠0,則x= 是原方程的根


(2)解:2(x﹣6)+4≤3x﹣5

2x﹣12+4≤3x﹣5,

解得:x≥﹣3,

如圖所示:


【解析】(1)首先找出最簡(jiǎn)公分母,再去分母進(jìn)而解方程得出答案;(2)首先去括號(hào),進(jìn)而解不等式得出答案.
【考點(diǎn)精析】掌握去分母法和不等式的解集在數(shù)軸上的表示是解答本題的根本,需要知道先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗(yàn)根,原留增舍別含糊;不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫(huà)數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫(huà),小于向左畫(huà),等于用實(shí)心圓點(diǎn),不等于用空心圓圈.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),P是反比例函數(shù)y= (x>0)圖象上的任意一點(diǎn),以P為圓心,PO為半徑的圓與x、y軸分別交于點(diǎn)A、B.
(1)判斷P是否在線段AB上,并說(shuō)明理由;
(2)求△AOB的面積;
(3)Q是反比例函數(shù)y= (x>0)圖象上異于點(diǎn)P的另一點(diǎn),請(qǐng)以Q為圓心,QO半徑畫(huà)圓與x、y軸分別交于點(diǎn)M、N,連接AN、MB.求證:AN∥MB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l經(jīng)過(guò)點(diǎn)A(1,0),與雙曲線y= (x>0)交于點(diǎn)B(2,1).過(guò)點(diǎn)P(p,p﹣1)(p>1)作x軸的平行線分別交雙曲線y= (x>0)和y=﹣ (x<0)于點(diǎn)M、N.
(1)求m的值和直線l的解析式;
(2)若點(diǎn)P在直線y=2上,求證:△PMB∽△PNA;
(3)是否存在實(shí)數(shù)p,使得SAMN=4SAMP?若存在,請(qǐng)求出所有滿足條件的p的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)E、M在BC上,則∠EAN=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y= x﹣3與反比例函數(shù) 的圖象相交于點(diǎn)A(4,n),與 軸相交于點(diǎn)B.

(1)填空:n的值為 , k的值為;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在 軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)考察反比函數(shù) 的圖象,當(dāng) 時(shí),請(qǐng)直接寫出自變量 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形三邊的長(zhǎng)a、b、c滿足 =b,那么我們就把這樣的三角形叫做“勻稱三角形”,如:三邊長(zhǎng)分別為1,1,1或3,5,7,…的三角形都是“勻稱三角形”.
(1)如圖1,已知兩條線段的長(zhǎng)分別為a、c(a<c).用直尺和圓規(guī)作一個(gè)最短邊、最長(zhǎng)邊的長(zhǎng)分別為a、c的“勻稱三角形”(不寫作法,保留作圖痕跡);
(2)如圖2,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線交AB延長(zhǎng)線于點(diǎn)E,交AC于點(diǎn)F,若 ,判斷△AEF是否為“勻稱三角形”?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD的邊長(zhǎng)2,∠A=60°,點(diǎn)E、F分別在邊AB、AD上,若將△AEF沿直線EF折疊,使得點(diǎn)A恰好落在CD邊的中點(diǎn)G處,則EF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,正方形ABCD中,E為BC邊上一點(diǎn),F(xiàn)為BA延長(zhǎng)線上一點(diǎn),且CE=AF.連接DE、DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P在射線BC上(異于點(diǎn)B、C),直線AP與對(duì)角線BD及射線DC分別交于點(diǎn)F、Q
(1)若BP= ,求∠BAP的度數(shù);
(2)若點(diǎn)P在線段BC上,過(guò)點(diǎn)F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時(shí),求PC的長(zhǎng);
(3)以PQ為直徑作⊙M. ①判斷FC和⊙M的位置關(guān)系,并說(shuō)明理由;
②當(dāng)直線BD與⊙M相切時(shí),直接寫出PC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案