【題目】已知是一張直角三角形紙片,其中,,小亮將它繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到,交直線于點(diǎn).
(1)如圖1,當(dāng)時(shí),所在直線與線段有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由.
(2)如圖2,當(dāng),求為等腰三角形時(shí)的度數(shù).
【答案】(1)BD與FM互相垂直,理由見(jiàn)解析;(2)β的度數(shù)為30°或75°或120°.
【解析】
(1)由題意設(shè)直線BD與FM相交于點(diǎn)N,即可根據(jù)旋轉(zhuǎn)的性質(zhì)判斷直線BD與線段MF垂直;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得∠MAD=β,分類(lèi)討論:當(dāng)KA=KD時(shí),根據(jù)等腰三角形的性質(zhì)得∠KAD=∠D=30°,即β=30°;當(dāng)DK=DA時(shí),根據(jù)等腰三角形的性質(zhì)得∠DKA=∠DAK,然后根據(jù)三角形內(nèi)角和可計(jì)算出∠DAK=75°,即β=75°;當(dāng)AK=AD時(shí),根據(jù)等腰三角形的性質(zhì)得∠AKD=∠D=30°,然后根據(jù)三角形內(nèi)角和可計(jì)算出∠KAD=120°,即β=120°.
解:(1)BD與FM互相垂直,理由如下
設(shè)此時(shí)直線BD與FM相交于點(diǎn)N
∵∠DAB=90°,∠D=30°
∴∠ABD=90°-∠D=60°,
∴∠NBM=∠ABD=60°
由旋轉(zhuǎn)的性質(zhì)得△ADB≌△AMF,∴∠D=∠M=30°
∴∠MNB=180°-∠M-∠NBM=180°-30°- 60°= 90°
∴BD與FM互相垂直
(2)
當(dāng)KA=KD時(shí),則∠KAD=∠D=30°,即β=30°;
當(dāng)DK=DA時(shí),則∠DKA=∠DAK,
∵∠D=30°,∴∠DAK=(180°﹣30°)÷2=75°,即β=75°;
當(dāng)AK=AD時(shí),則∠AKD=∠D=30°,
∴∠KAD=180°﹣30°﹣30°=120°,即β=120°,
綜上所述,β的度數(shù)為30°或75°或120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明隨機(jī)調(diào)查了若干市民租用共享單車(chē)的騎車(chē)時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問(wèn)題:
(1)這項(xiàng)被調(diào)查的總?cè)藬?shù)是多少人?
(2)試求表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;
(3)如果小明想從D組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時(shí)租用共享單車(chē)情況,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】文化是一個(gè)國(guó)家、一個(gè)民族的靈魂,近年來(lái),央視推出《中國(guó)詩(shī)詞大會(huì)》、《中國(guó)成語(yǔ)大會(huì)》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對(duì)這些欄目的喜愛(ài)情況,某學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國(guó)詩(shī)詞大會(huì)》(記為B)、《中國(guó)成語(yǔ)大會(huì)》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛(ài)的一個(gè)欄目,也可以不選以上四類(lèi)而寫(xiě)出一個(gè)自己最喜愛(ài)的其他文化欄目(這時(shí)記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了 名學(xué)生;
(2)最喜愛(ài)《朗讀者》的學(xué)生有 名;
(3)扇形統(tǒng)計(jì)圖中“B”所在扇形圓心角的度數(shù)為 ;
(4)選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機(jī)選出兩名學(xué)生參加座談,請(qǐng)直接寫(xiě)出:剛好選到一名男生和一名女生的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.一顆質(zhì)地均勻的骰子已連續(xù)拋擲了2000次,其中拋擲出5點(diǎn)的次數(shù)最少,則第2001次一定拋擲出5點(diǎn)
B.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等
C.明天降雨的概率是80%,表示明天有80%的時(shí)間降雨
D.某種彩票中獎(jiǎng)的概率是1%,因此買(mǎi)100張?jiān)摲N彩票一定會(huì)中獎(jiǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,B,C,D三點(diǎn)在 上,,PA是鈍角△ABC的高線,PA的延長(zhǎng)線與線段CD交于點(diǎn)E.
(1)請(qǐng)?jiān)趫D中找出一個(gè)與∠CAP相等的角,這個(gè)角是 ;
(2)用等式表示線段AC,EC,ED之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=2,點(diǎn)E在邊BC上,將△ABE沿AE折疊,點(diǎn)B恰好落在對(duì)角線AC上的點(diǎn)B′處.則線段BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.?dāng)S一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件
B.審查書(shū)稿中有哪些學(xué)科性錯(cuò)誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績(jī)的平均數(shù)相同,方差分別是=0.4,=0.6,則甲的射擊成績(jī)較穩(wěn)定
D.?dāng)S兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某居民小區(qū)要在一塊一邊靠墻的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為32m的柵欄圍成(如圖所示).如果墻長(zhǎng)16m,滿足條件的花園面積能達(dá)到120m2嗎?若能,求出此時(shí)BC的值;若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合探究
已知拋物線y=ax2+x+4的對(duì)稱(chēng)軸是直線x=3,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C.
(1)求拋物線的解析式和A,B兩點(diǎn)的坐標(biāo);
(2)如圖1,若點(diǎn)P是拋物線上B、C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與B、C重合),是否存在點(diǎn)P,使四邊形PBOC的面積最大?若存在,求點(diǎn)P的坐標(biāo)及四邊形PBOC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,若點(diǎn)M是拋物線上任意一點(diǎn),過(guò)點(diǎn)M作y軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時(shí),直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com