【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會平行嗎?說明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
【答案】(1)平行,理由見解析;(2)平行,理由見解析;(3) 平分,理由見解析.
【解析】試題分析:(1)∠1+∠2=180°而∠2+∠CDB=180°,則∠CDB=∠1,根據(jù)同位角相等,兩直線平行,求得結(jié)論;
(2)要說明AD與BC平行,只要說明∠BCF+∠CDA=180°即可.而根據(jù)AE∥FC可得:∠CDA+∠DEA=180°,再據(jù)∠DAE=∠BCF就可以證得.
(3)BC平分∠DBE即說明∠EBC=∠DBC是否成立.根據(jù)AE∥FC,可得:∠EBC=∠BCF,據(jù)AD∥BC得到:∠BCF=∠FAD,∠DBC=∠BAD,進而就可以證出結(jié)論.
解:(1)平行;
證明:∵∠2+∠CDB=180°,∠1+∠2=180°,
∴∠CDB=∠1,
∴AE∥FC.
(2)平行,
證明:∵AE∥FC,
∴∠CDA+∠DAE=180°,
∵∠DAE=∠BCF
∴∠CDA+∠BCF=180°,
∴AD∥BC.
(3)平分,
證明:∵AE∥FC,
∴∠EBC=∠BCF,
∵AD∥BC,
∴∠BCF=∠FDA,∠DBC=∠BDA,
又∵DA平分∠BDF,即∠FDA=∠BDA,
∴∠EBC=∠DBC,
∴BC平分∠DBE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個正方體紙盒,在它的三個側(cè)面分別畫有三角形、正方形和圓,現(xiàn)用一把剪刀沿著它的棱剪開成一個平面圖形,則展開圖可以是( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市2016年初中畢業(yè)生人數(shù)約為63 000,數(shù)63 000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于多項式﹣2ab2+3a3b+5﹣a2 , 下列說法中,正確的是( )
A.三次四項式
B.四次四項式
C.二次項系數(shù)是1
D.一次項是5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a=255,b=344,c=433,則a、b、c的大小關(guān)系為( )
A. a>b>cB. a>c>bC. b>c>aD. b>a>c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級組織學(xué)生參加夏令營,分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學(xué)生報名參加夏令營的情況.請你根據(jù)圖中的信息回答下列問題:
報名人數(shù)分布直方圖 報名人數(shù)扇形統(tǒng)計圖
(1)求該年級報名參加本次活動的總?cè)藬?shù);
(2)求該年級報名參加乙組的人數(shù),并補全頻數(shù)分布直方圖;
(3)根據(jù)實際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,那么,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com