【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)m,自變量的值為m 時,函數(shù)值等于m,則稱m為這個函數(shù)的反向值.在函數(shù)存在反向值時,該函數(shù)的最大反向值與最小反向值之差n稱為這個函數(shù)的反向距離.特別地,當函數(shù)只有一個反向值時,其反向距離n為零. 例如:圖中的函數(shù)有 4,-1兩個反向值,其反向距離 n 等于 5. 現(xiàn)有函數(shù)y=,則這個函數(shù)的反向距離的所有可能值有( )
A. 1個B. 2個C. 3個及以上的有限個D. 無數(shù)個
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點P的鉛直高度.(結果精確到0.1米)
(2)求此人從所在位置點P走到建筑物底部B點的路程(結果精確到0.1米)
(測傾器的高度忽略不計,參考數(shù)據:tan53°≈,tan63.5°≈2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,我們可以利用△ABC與△ACD相似證明AC2=AD·AB,這個結論我們稱之為射影定理,試證明這個定理;
(結論運用)如圖,正方形ABCD的邊長為6,點O是對角線AC、BD的交點,點E在CD上,過點C作CF⊥BE,垂足為F,連接OF.
(1)試利用射影定理證明△ABC∽△BED;
(2)若DE=2CE,求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為6cm的⊙O中,點A是劣弧BC的中點,點D是優(yōu)弧BC上一點,且∠D=30°,下列四個結論:①OA⊥BC;②BC=6cm;③sin∠AOB=;④四邊形ABOC是菱形.其中正確結論的序號是( )
A. ①③ B. ①②③④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一個三角形,設其三個內角的度數(shù)分別為x°、y°和z°,若x、y、z滿足x2+y2=z2,我們定義這個三角形為美好三角形.
(1)△ABC中,若∠A=40°,∠B=80°,則△ABC (填“是”或“不是”)美好三角形;
(2)如圖,銳角△ABC是⊙O的內接三角形,∠C=60°,AC=2,⊙O的直徑是2,求證:△ABC是美好三角形;
(3)已知△ABC是美好三角形,∠A=30°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某公司分兩次采購了一批原料,已知第二次的采購數(shù)量是第一次采購數(shù)量的兩倍,其它信息如下表:
第一次 | 第二次 | |
每噸原料的價格(元) | m+500 | m-500 |
采購費用(萬元) | 40 | 60 |
(1)求m的值,并求出這兩次共采購了多少噸原料?
(2)該公司可將原料加工成A型產品或B型產品,而受設備限制每天只能安排加工一種型號產品.經統(tǒng)計,加工A型產品與B型產品各1天共需用原料數(shù)為20噸,加工3天A型產品與加工2天B型產品所需用原料數(shù)相等.請求出加工成A,B型產品每天所需的原料數(shù)分別是多少噸?
(3)該公司將生產的兩種產品全部出口國外,每噸原料加工成A,B型產品后的獲利分別是1000元與600元,但要求加工時間不超過30天.為了使總利潤獲得最大,應采用怎樣的加工方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國經濟的快速發(fā)展讓眾多國家感受到了威脅,隨著釣魚島事件、南海危機、薩德入韓等系列事件的發(fā)生,國家安全一再受到威脅,所謂“國家興亡,匹夫有責”,某校積極開展國防知識教育,九年級甲、乙兩班分別選5名同學參加“國防知識”比賽,其預賽成績如圖所示:
(1)根據如圖填寫如表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | ||
乙班 | 8.5 | 10 | 1.6 |
(2)根據如表數(shù)據,分析哪個班的成績較好,請詳細說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,OA=AB,OC⊥AB,則下列結論錯誤的是( 。
A. 弦AB的長等于圓內接正六邊形的邊長
B. 弦AC的長等于圓內接正十二邊形的邊長
C.
D. ∠BAC=30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點,若在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是( 。
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com