已知拋物線x軸交于兩點、

,與y軸交于點C,AB=6.

1.(1)求拋物線和直線BC的解析式.

2.(2)在直角坐標(biāo)系中,畫出拋物線和直線BC

3.(3)若⊙P過A、B、C三點,求⊙P的半徑.

4.(4)拋物線上是否存在點M,過點M軸于點N,使被直線BC分成面積比為的兩部分?若存在,請求出點M的坐標(biāo);若不存在,請說明理由

 

 

1.(1)由題意得: 

∴直線BC的解析式為  

2.

3.(3)解法一:在中,OA=OC=5,∴∠OAC=45 

 

∴⊙P的半徑           ……(8分)

4.(4)設(shè)MN交直線BC于點E,點M的坐標(biāo)為,則點E的坐標(biāo)為

,則

解得(不合題意舍去),

,則

解得(不合題意舍去),,

存在點M,點M的坐標(biāo)為或(15,280).

解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于A(-1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線與x軸交于A(-3,0),B(1,0)兩點,與y軸交于點C(0,-3),拋物線頂點為D,連接AD,AC,CD.
(1)求該拋物線的解析式;
(2)△ACD與△COB是否相似?如果相似,請給以證明;如果不相似,請說明理由;
(3)拋物線的對稱軸與線段AC交于點E,求△CED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)點P在x軸下方的拋物線上,且△PAB的面積等于△ABC的面積,求點P的坐標(biāo);
(3)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•岳陽一模)如圖,已知拋物線與x軸交于A(-4,0)和B(1,0)兩點,與y軸交于C(0,-2)點.
(1)求此拋物線的解析式;
(2)設(shè)G是線段BC上的動點,作GH∥AC交AB于H,連接CH,當(dāng)△BGH的面積是△CGH面積的3倍時,求H點的坐標(biāo);
(3)若M為拋物線上A、C兩點間的一個動點,過M作y軸的平行線,交AC于N,當(dāng)M點運(yùn)動到什么位置時,線段MN的值最大,并求此時M點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案