【題目】如圖,在ABC中,ABAC,BD平分∠ABCAC于點(diǎn)D,點(diǎn)EBC延長(zhǎng)線上的一點(diǎn),且BDDE.點(diǎn)G是線段BC的中點(diǎn),連結(jié)AG,交BD于點(diǎn)F,過(guò)點(diǎn)DDHBC,垂足為H

1)求證:DCE為等腰三角形;

2)若∠CDE22.5°,DC,求GH的長(zhǎng);

3)探究線段CEGH的數(shù)量關(guān)系并用等式表示,并說(shuō)明理由.

【答案】(1)證明見解析;(2);(3CE2GH,理由見解析.

【解析】

1)根據(jù)題意可得∠CBDABCACB,,由BD=DE,可得∠DBC=∠EACB,根據(jù)三角形的外角性質(zhì)可得∠CDEACB=∠E,可證△DCE為等腰三角形;

2)根據(jù)題意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性質(zhì)可得BG=GC,BH=HE=+1,即可求GH的值;

3CE=2GH,根據(jù)等腰三角形的性可得BG=GC,BH=HE,可得GHGCHCGC﹣(HECE)=BCBE+CECE,即CE=2GH

證明:(1)∵ABAC,

∴∠ABC=∠ACB

BD平分∠ABC,

∴∠CBDABCACB

BDDE,

∴∠DBC=∠EACB,

∵∠ACB=∠E+CDE

∴∠CDEACB=∠E,

CDCE

∴△DCE是等腰三角形

2

∵∠CDE22.5°,CDCE

∴∠DCH45°,且DHBC,

∴∠HDC=∠DCH45°

DHCH,

DH2+CH2DC22,

DHCH1,

∵∠ABC=∠DCH45°

∴△ABC是等腰直角三角形,

又∵點(diǎn)GBC 中點(diǎn)

AGBC,AGGCBG,

BDDE,DHBC

BHHE+1

BHBG+GHCG+GHCH+GH+GH+1

1+2GH+1

GH

3CE2GH

理由如下:∵ABCA,點(diǎn)G BC的中點(diǎn),

BGGC

BDDE,DHBC

BHHE,

GHGCHCGC﹣(HECE)=BCBE+CECE

CE2GH

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上)

(1)把ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的A1B1C1;

(2)把A1B1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的A1B2C2;

(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的三個(gè)角是∠A,B,C ,它們所對(duì)的邊分別是a,b,c.c2-a2=b2;②∠A=B=C;c=a=b;a=2,b=2 ,c=.上述四個(gè)條件中,能判定ABC 為直角三角形的有(  )

A. 1個(gè) B. 2個(gè)

C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).

(1)求此拋物線的解析式;

(2)如圖2,點(diǎn)D為拋物線的頂點(diǎn),連接CD,點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過(guò)點(diǎn)PPEy軸交線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE長(zhǎng)為d,寫出dt的關(guān)系式(不要求寫出自變量t的取值范圍);

(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+3)x+3m=0.

(1)求證:無(wú)論m取什么實(shí)數(shù)值,該方程總有兩個(gè)實(shí)數(shù)根.

(2)若該方程的兩實(shí)根x1x2是一個(gè)矩形兩鄰邊的長(zhǎng)且該矩形的對(duì)角線長(zhǎng)為,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在 中, AC=BC, ,垂足分別為DE

1)若AD=25cm,DE=17cm,求BE的長(zhǎng).

2)如圖2,在原題其他條件不變的前提下,將CE所在直線旋轉(zhuǎn)到 ABC的外部,請(qǐng)你猜想AD,DE,BE三者之間的數(shù)量關(guān)系,直接寫出結(jié)論:________.(不需證明)

3)如圖3,若將原題中的條件改為: ABC中,AC=BC,D,C,E三點(diǎn)在同一條直線上,并且有 ,其中 為任意鈍角,那么(2)中你的猜想是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE∠BAC的平分線,∠ABC的平分線 BMAE于點(diǎn)M,點(diǎn)OAB上,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)M,交BC于點(diǎn)G,交 AB于點(diǎn)F

1)求證:AE⊙O的切線.

2)當(dāng)BC=8,AC=12時(shí),求⊙O的半徑.

3)在(2)的條件下,求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究下面的問(wèn)題:

(1)如圖甲,在邊長(zhǎng)為a的正方形中去掉一個(gè)邊長(zhǎng)為b的小正方形(ab),把余下的部分剪拼成如圖乙的一個(gè)長(zhǎng)方形,通過(guò)計(jì)算兩個(gè)圖形(陰影部分)的面積,驗(yàn)證了一個(gè)等式,這個(gè)等式是________(用式子表示),即乘法公式中的___________公式.

(2)運(yùn)用你所得到的公式計(jì)算:

10.7×9.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)EAB的中點(diǎn),點(diǎn)P從點(diǎn)E出發(fā),沿移動(dòng)至終點(diǎn)C.設(shè)點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)為x的面積為y,則下列圖象能大致反映yx之間的函數(shù)關(guān)系的是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案