【題目】已知△ABC的三個角是∠A,∠B,∠C ,它們所對的邊分別是a,b,c.①c2-a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2 ,c=.上述四個條件中,能判定△ABC 為直角三角形的有( )
A. 1個 B. 2個
C. 3個 D. 4個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,共享單車逐漸成為高校學(xué)生喜愛的“綠色出行”方式之一,自2016年國慶后,許多高校均投放了使用手機支付就可隨取隨用的共享單車.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計表.
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 11 | 15 | 23 | 28 | 18 | 5 |
(1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是 ,眾數(shù)是 ,該中位數(shù)的意義是 ;
(2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))
(3)若該校某天有1500名學(xué)生出行,請你估計這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校中學(xué)生對《最強大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節(jié)目的喜愛情況,隨機抽取了x名學(xué)生進行調(diào)查統(tǒng)計(要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表:根據(jù)以上提供的信息,解答下列問題:
節(jié)目 | 人數(shù)(名) | 百分比 |
最強大腦 | 5 | 10% |
朗讀者 | 15 | b% |
中國詩詞大會 | a | 40% |
出彩中國人 | 10 | 20% |
(1)x= ,a= ,b= ;
(2)補全上面的條形統(tǒng)計圖;
(3)在喜愛《最強大腦》的學(xué)生中,有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機抽取2名同學(xué)代表學(xué)校參加濰坊市組織的競賽活動,請用樹狀圖或列表法求出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1交y軸于點A,交x軸正半軸于點B(4,0) ,與過A點的直線相交于另一點D(3,) ,過點D作DC⊥x軸,垂足為C.
(1)求拋物線的表達式;
(2)點P在線段OC上(不與點O,C重合),過P作PN⊥x軸,交直線AD于M,交拋物線于點N,連接CM,求△PCM 面積的最大值;
(3)若P 是x 軸正半軸上的一動點,設(shè)OP 的長為t.是否存在t,使以點M,C,D,N 為頂點的四邊形是平行四邊形?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以點A和點C為圓心,以大于AC的長為半徑作弧,兩弧相交于M、N兩點;②作直線MN交BC于點D,連接AD.若AB=BD,AB=6,∠C=30°,則△ACD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,則圖中陰影部分的面積為_________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富.某班模擬開展“中國詩詞大賽”比賽,對全班同學(xué)成績進行統(tǒng)計后分為“A優(yōu)秀”、“B一般”、“C較差”、“D良好”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖中的信息,回答下列問題:
(1)本班有多少同學(xué)優(yōu)秀?
(2)通過計算補全條形統(tǒng)計圖.
(3)學(xué)校預(yù)全面推廣這個比賽提升學(xué)生的文化素養(yǎng),估計該校3000人有多少人成績良好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,點E是BC延長線上的一點,且BD=DE.點G是線段BC的中點,連結(jié)AG,交BD于點F,過點D作DH⊥BC,垂足為H.
(1)求證:△DCE為等腰三角形;
(2)若∠CDE=22.5°,DC=,求GH的長;
(3)探究線段CE,GH的數(shù)量關(guān)系并用等式表示,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在某小區(qū)隨機抽取了若干名居民開展主題為“打贏藍(lán)天保衛(wèi)戰(zhàn)”的環(huán)保知識有獎答卷活動(每名居民必須答卷且只答一份),并用得到的數(shù)據(jù)繪制了如圖所示的條形統(tǒng)計圖(得分為整數(shù),滿分為分,最低分為分)
請根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查,一共抽取了多少名居民?
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和眾數(shù);
(3)社區(qū)決定對該小區(qū)名居民開展這項有獎答卷活動,得分者獲一等獎,請你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計需要準(zhǔn)備多少份一等獎獎品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com