如圖,在正方形ABCD中,AD=2,E是AB的中點,將△BEC繞點B逆時針旋轉(zhuǎn)90°后,點E落在CB的延長線上點F處,點C落在點A處.再將線段AF繞點F順時針旋轉(zhuǎn)90°得線段FG,連接EF,CG.
(1)求證:EF∥CG;
(2)求點C,點A在旋轉(zhuǎn)過程中形成的
AC
,
AG
與線段CG所圍成的陰影部分的面積.
考點:正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,扇形面積的計算
專題:幾何綜合題
分析:(1)根據(jù)正方形的性質(zhì)可得AB=BC=AD=2,∠ABC=90°,再根據(jù)旋轉(zhuǎn)變化只改變圖形的位置不改變圖形的形狀可得△ABF和△CBE全等,根據(jù)全等三角形對應(yīng)角相等可得∠FAB=∠ECB,∠ABF=∠CBE=90°,全等三角形對應(yīng)邊相等可得AF=EC,然后求出∠AFB+∠FAB=90°,再求出∠CFG=∠FAB=∠ECB,根據(jù)內(nèi)錯角相等,兩直線平行可得EC∥FG,再根據(jù)一組對邊平行且相等的四邊形是平行四邊形判斷出四邊形EFGC是平行四邊形,然后根據(jù)平行四邊形的對邊平行證明;
(2)求出FE、BE的長,再利用勾股定理列式求出AF的長,根據(jù)平行四邊形的性質(zhì)可得△FEC和△CGF全等,從而得到S△FEC=S△CGF,再根據(jù)S陰影=S扇形BAC+S△ABF+S△FGC-S扇形FAG列式計算即可得解.
解答:(1)證明:在正方形ABCD中,AB=BC=AD=2,∠ABC=90°,
∵△BEC繞點B逆時針旋轉(zhuǎn)90°得到△ABF,
∴△ABF≌△CBE,
∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=CE,
∴∠AFB+∠FAB=90°,
∵線段AF繞點F順時針旋轉(zhuǎn)90°得線段FG,
∴∠AFB+∠CFG=∠AFG=90°,
∴∠CFG=∠FAB=∠ECB,
∴EC∥FG,
∵AF=CE,AF=FG,
∴EC=FG,
∴四邊形EFGC是平行四邊形,
∴EF∥CG;

(2)解:∵AD=2,E是AB的中點,
∴BF=BE=
1
2
AB=
1
2
×2=1,
∴AF=
AB2+BF2
=
22+12
=
5
,
由平行四邊形的性質(zhì),△FEC≌△CGF,
∴S△FEC=S△CGF,
∴S陰影=S扇形BAC+S△ABF+S△FGC-S扇形FAG,
=
90•π•22
360
+
1
2
×2×1+
1
2
×(1+2)×1-
90•π•(
5
)
2
360
,
=
5
2
-
π
4
點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),旋轉(zhuǎn)變換的性質(zhì),勾股定理的應(yīng)用,扇形的面積計算,綜合題,但難度不大,熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一個不透明的布袋中有分別標(biāo)著數(shù)字1,2,3,4的四個乒乓球,先從袋中隨機(jī)摸出兩個乒乓球,則這兩個乒乓球上的數(shù)字之和大于5的概率為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

要組織一次排球邀請賽,參賽的每兩個各隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃安排7天,每天安排4場比賽,比賽組織者應(yīng)邀請多少個隊參賽?若設(shè)應(yīng)邀請x個隊參賽,可列出的方程為( 。
A、x(x+1)=28
B、x(x-1)=28
C、
1
2
x(x+1)=28
D、
1
2
x(x-1)=28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了推動陽光體育運(yùn)動的廣泛開展,引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,走到陽光下,積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運(yùn)動鞋供學(xué)生借用,現(xiàn)從各年級隨機(jī)抽取了部分學(xué)生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為
 
,圖①中m的值為
 
;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買200雙運(yùn)動鞋,建議購買35號運(yùn)動鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某市為了增強(qiáng)學(xué)生體質(zhì),全面實施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:

(1)本次被調(diào)查的學(xué)生有
 
名;
(2)補(bǔ)全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某市區(qū)一條主要街道的改造工程有甲、乙兩個工程隊投標(biāo).經(jīng)測算:若由兩個工程隊合做,12天恰好完成;若兩個隊合做9天后,剩下的由甲隊單獨完成,還需5天時間,現(xiàn)需從這兩個工程隊中選出一個隊單獨完成,從縮短工期角度考慮,你認(rèn)為應(yīng)該選擇哪個隊?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

紅花中學(xué)現(xiàn)要從甲、乙兩位男生和丙、丁兩位女生中,選派兩位同學(xué)分別作為①號選手和②號選手代表學(xué)校參加全縣漢字聽寫大賽.
(1)請用樹狀圖或列表法列舉出各種可能選派的結(jié)果;
(2)求恰好選派一男一女兩位同學(xué)參賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD,點P為射線BA上的一點(不和點A,B重合),過P作PE⊥CP,且CP=PE,過E作EF∥CD交射線BD于F點,EC交直線BD于G點.
(1)求證:EF=AB;
(2)請?zhí)骄緽F,DG和CD這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【問題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
【探究展示】
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.
【拓展延伸】
(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.

查看答案和解析>>

同步練習(xí)冊答案