【題目】如圖,直線y=kx+bx軸于點(diǎn)A(1,0),與雙曲線y=-x<0)交于點(diǎn)B(-1,a).

(1)求直線AB的解析式;

(2)若點(diǎn)B左側(cè)一直線x=m與直線AB交于點(diǎn)C,與雙曲線交于點(diǎn)DC、D兩點(diǎn)不重合),當(dāng)BC=BD時(shí),求m的值.

【答案】(1) y=-x+1 ;(2) m=-2.

【解析】分析:1)由點(diǎn)B-1a)在雙曲線上,可得B的坐標(biāo)再由直線y=kx+b過點(diǎn)A、B,可得直線AB的解析式

2)過點(diǎn)BBECD于點(diǎn)E.由等腰三角形的性質(zhì)得到DE=CE=CDCm,-m+1),Dm,-得到CD=-m+1+,-m+1+-=2解方程即可得到結(jié)論

詳解:(1)∵點(diǎn)B-1,a)在雙曲線上,a=2,∴B-12

直線y=kx+b過點(diǎn)AB,故得:,

解得:,∴直線AB的解析式為:y=-x+1

2)過點(diǎn)BBECD于點(diǎn)E

BC=BD, DE=CE=CD

由題意可知,Cm,-m+1),Dm,-,

CD=-m+1+,

-m+1+-=2

m=-1-2

又∵m<-1,∴m=-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列填空:

1)如圖,為直角,,且平分平分,的度數(shù).

2)如圖,,且平分平分.直接寫出的度數(shù).

:1)因?yàn)?/span>,所以

因?yàn)?/span>平分,所以

因?yàn)?/span>平分,所以

所以

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x22xm+1交x軸于點(diǎn)A(a,0)和Bb,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=4;③拋物線上有兩點(diǎn)Px1y1)和Qx2,y2),若x1<1< x2,且x1x2>2,則y1> y2;④點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)GF分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDFG周長(zhǎng)的最小值為.其中正確判斷的序號(hào)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BEAC于點(diǎn)F,交邊AD于點(diǎn)E,連結(jié)DF,若點(diǎn)EAD的中點(diǎn),則DF的長(zhǎng)為__________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶承包荒山若干畝,種果樹2000棵.今年水果總產(chǎn)量為18000千克,此水果在市場(chǎng)上每千克售元,在果園每千克售.該農(nóng)戶將水果拉到市場(chǎng)出售平均每天出售1000千克,需8人幫忙,每人每天付工資25元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)稅費(fèi)平均每天100元.

1)分別用表示兩種方式出售水果的收入.

2)若元,元,且兩種方式都在相同的時(shí)間內(nèi)售完全部水果,請(qǐng)你通過計(jì)算說明選擇哪種出售方式較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB=90°,∠BAC=60°,BC=2,DAB的中點(diǎn),直線BMAC,E是邊CA延長(zhǎng)線上一點(diǎn),將△EDC沿CD翻折得到△EDC,射線DE′交直線BM于點(diǎn)F

1)如圖1,當(dāng)點(diǎn)E′與點(diǎn)F重合時(shí),求證:四邊形ABEC為平行四邊形;

2)如圖2,延長(zhǎng)ED交線段BF于點(diǎn)G

①設(shè)BG=xGF=y,求yx的函數(shù)關(guān)系式;

②若△DFG的面積為3,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)

(2)

(3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長(zhǎng)方形沿AE對(duì)折后點(diǎn)D落在BC邊的點(diǎn)F,BC=5cm,

AB=4cm,求:(1)CF的長(zhǎng);(2)EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點(diǎn)E,BED的角平分線EFDC交于點(diǎn)F,若AB=9DF=2FC,則BC=____.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案