【題目】如圖,在△ABC中,AB邊的垂直平分線交BC于D,AC邊的垂直平分線交BC于E, 與相交于點O,△ADE的周長為6cm.
(1)求BC的長;
(2)分別連結(jié)OA、OB、OC,若△OBC的周長為16cm,求OA的長;
【答案】(1)6cm,(2)5cm.
【解析】試題分析:(1)由在△ABC中,AB邊的垂直平分線l1交BC于D,AC邊的垂直平分線l2交BC于E,l1與l2相交于點O,可得AD=BD,AE=CE,繼而可得BC=△ADE的周長;
(2)由在△ABC中,AB邊的垂直平分線l1交BC于D,AC邊的垂直平分線l2交BC于E,l1與l2相交于點O,可得OA=OB=OC,繼而求得答案.
試題解析:(1)∵在△ABC中,AB邊的垂直平分線l1交BC于D,AC邊的垂直平分線l2交BC于E,l1與l2相交于點O,
∴AD=BD,AE=CE,
∵△ADE的周長為6cm.
∴B=BD+DE+CE=AD+DE+AE=6cm;
(2)連結(jié)OA、OB、OC,
∵在△ABC中,AB邊的垂直平分線l1交BC于D,AC邊的垂直平分線l2交BC于E,l1與l2相交于點O,
∴OA=OB,OA=OC,
∴OA=OB=OC,
∵△OBC的周長為16cm,
∴OB+OC+BC=16cm,
∴OB=OC=5cm,
∴OA=5cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知C是∠AOB的平分線上一點,點P,P′分別在邊OA,OB上,如果要得到OP=OP′,需要添加以下條件中的某一個,那么所有可能結(jié)果的序號為________.
①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,某學(xué)校計劃用彩色的地面磚鋪設(shè)教學(xué)樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設(shè)計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設(shè)的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學(xué),F(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學(xué)的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決多少資金?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,△ABC是直角三角形,∠ACB=90°,點B、C都在第一象限內(nèi),CA⊥x軸,垂足為點A,反比例函數(shù)y1= 的圖象經(jīng)過點B;反比例函數(shù)y2= 的圖象經(jīng)過點C( ,m).
(1)求點B的坐標(biāo);
(2)△ABC的內(nèi)切圓⊙M與BC,CA,AB分別相切于D,E,F(xiàn),求圓心M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為48和36,求△EDF的面積________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點坐標(biāo)為A(m,2).
(1)求m的值和一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;
(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)的頂點為B(2,1),且過點A(0,2),直線y=x與拋物線交于點D,E(點E在對稱軸的右側(cè)),拋物線的對稱軸交直線y=x于點C,交x軸于點G,EF⊥x軸,垂足為F,點P在拋物線上,且位于對稱軸的右側(cè),PQ⊥x軸,垂足為點Q,△PCQ為等邊三角形
(1)求該拋物線的解析式;
(2)求點P的坐標(biāo);
(3)求證:CE=EF;
(4)連接PE,在x軸上點Q的右側(cè)是否存在一點M,使△CQM與△CPE全等?若存在,試求出點M的坐標(biāo);若不存在,請說明理由.[注:3+2 =( +1)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1在△ABC中,EF與AC交于點G,與BC的延長線交于點F,∠B=45°,
∠F=30°,∠CGF=70°,求∠A的度數(shù).
(2)利用三角板也能畫出一個角的平分線,畫法如下:①利用三角板在∠AOB的兩邊上分
別取OM=ON:②分別過點M、N畫OM、ON的垂線,交點為;③畫射線OP,所以射線OP為∠AOB的角平分線,請你評判這種作法的正確性并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com