【題目】如圖,2條直線 最多有=1個交點,3條直線最多有=3個交點,4條直線最多有=6個交點,……由此猜想,8條直線最多有___個交點.

A. 32 B. 16 C. 28 D. 40

【答案】C

【解析】

由已知中兩條相交直線最多有1個交點,三條直線最多有3個交點,四條直線最多有6個交點點,五條直線最多有10個交點,我們分析n值變化過程中,交點最多個數(shù)的變化趨勢,找出規(guī)律后,歸納為一般性公式即可得到答案.

n條直線最多交點個數(shù)為M
兩條相交直線最多有1個交點,即n=2M=1,
三條直線最多有3個交點,即n=3,M=3
四條直線最多有6個交點點,即n=4,M=6,
五條直線最多有10個交點,即n=5,M=10,

n條直線最多交點個數(shù)M=1+2+3+4+…+n-1= ,
n=8時,=28,
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖示,AB∥CD,且點E在射線ABCD之間,請說明∠AEC=∠A+∠C的理由.

(2)現(xiàn)在如圖b示,仍有AB∥CD,但點EABCD的上方,請嘗試探索∠1,∠2,∠E三者的數(shù)量關系. ②請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水龍頭關閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時間t(h)的函數(shù)關系圖象,請結(jié)合圖象解答下列問題:

(1)容器內(nèi)原有水多少?

(2)求Wt之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲坐地鐵先出發(fā),甲出發(fā)0.2小時后乙開汽車前往.設甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km).如圖①是y1與y2關于x的函數(shù)圖象.
(1)分別求線段OA與線段BC所表示的y1與y2關于x的函數(shù)表達式;
(2)當x為多少時,兩人相距6km?
(3)設兩人相距S千米,在圖②所給的直角坐標系中畫出S關于x的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC 中,∠A=90°,ABAC,點 D BC 的中點.

(1) E、F 分別為 ABAC 上的中點,請按要求作出滿足條件的ABC 圖形并證明:DEDF;

(2)如圖①,若點 E、F 分別為 AB、AC 上的點,且 DEDF,求證:BEAF;

(3)若點 EF 分別為 AB、CA 延長線上的點,且 DEDF,那么 BEAF 嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為提倡節(jié)約用水,準備實行自來水階梯計費方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地做決策,自來水公司隨機抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖(每組數(shù)據(jù)包括最大值但不包括最小值),請你根據(jù)統(tǒng)計圖解決下列問題:

(1)此次抽樣調(diào)查的樣本容量是   

(2)補全左側(cè)統(tǒng)計圖,并求扇形統(tǒng)計圖中“25噸~30部分的圓心角度數(shù).

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,圖表示的是某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的情況,圖表示的是學生日訪問量占日訪問總量的百分比情況,觀察圖、,解答下列問題:

1)若這7天的日訪問總量一共約為10萬人次,求星期三的日訪問總量;

2)求星期日學生日訪問總量;

3)請寫出一條從統(tǒng)計圖中得到的信息.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點D、E分別在邊BC、AC上,AE=BD,連接DE,過點EEFDE,交線段BC的延長線于點F.

(1)求證:CE=CF;

(2)BD=CE,AB=9,求線段DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為深化義務教育課程改革,某校積極開展拓展性課程建設,計劃開設藝術(shù)、體育、勞技、文學等多個類別的拓展性課程,要求每一位學生都自主選擇一個類別的拓展性課程.為了了解學生選擇拓展性課程的情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):

根據(jù)統(tǒng)計圖中的信息,解答下列問題:

)求本次被調(diào)查的學生人數(shù).

)將條形統(tǒng)計圖補充完整.

)若該校共有名學生,請估計全校選擇體育類的學生人數(shù).

查看答案和解析>>

同步練習冊答案