【題目】如圖,的角平分線,,垂足為,,的面積分別是6040,則的面積( )

A.8B.10C.12D.20

【答案】B

【解析】

過點(diǎn)DDHACH,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DFDH,然后利用“HL”證明RtDEFRtDGH全等,根據(jù)全等三角形的面積相等可得SEDFSGDH,設(shè)面積為S,然后根據(jù)SADFSADH列出方程求解即可.

如圖,過點(diǎn)DDHACH,

AD是△ABC的角平分線,DFAB,

DFDH,

RtDEFRtDGH中,

RtDEFRtDGHHL),

SEDFSGDH,設(shè)面積為S,

同理RtADFRtADH

SADFSADH,

40S60S,

解得S10

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)化簡;

2)若n,求①n2-2n; 4n39n22n+1; 3n27n++4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次研究性學(xué)習(xí)活動中,同學(xué)們看到了工人師傅在木板上畫一個直角三角形的過程(如圖所示):畫線段AB,過點(diǎn)A任作一條直線l,以點(diǎn)A為圓心,以AB長為半徑畫弧,與直線l相交于兩點(diǎn)C、D,連接BCBD.則BCD就是直角三角形.

1)請你說明BCD是直角三角形的道理;

2)請利用上述方法作一個直角三角形,使其中一個銳角為60°(不寫作法,保留作圖

痕跡,在圖中注明60°的角).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是梯形,ADBC,∠A90°,BCBD,CEBD,垂足為E

(1)求證:ABD≌△ECB;

(2)若∠DBC50°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ACBCAEAO,BFBO,則∠EOF的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)邊上且點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離相等.

1)利用尺規(guī)作圖作出點(diǎn),不寫作法但保留作圖痕跡.

2)連接,若,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于點(diǎn)P (x,y),若點(diǎn)Q的坐標(biāo)為(ax+yx+ay), 其中a為常數(shù),則稱點(diǎn)Q是點(diǎn)P“a級關(guān)聯(lián)點(diǎn)",例如,點(diǎn)P(1,4)“3級關(guān)聯(lián)點(diǎn)"Q (3×1+41+3×4), Q (713)。

(1)已知點(diǎn)A (-2,6)級關(guān)聯(lián)點(diǎn)是點(diǎn)A1,點(diǎn)B“2級關(guān)聯(lián)點(diǎn)B1 (3, 3) 求點(diǎn)A1和點(diǎn)B的坐標(biāo):

(2)已知點(diǎn)M (m-1, 2m)“-3級關(guān)聯(lián)點(diǎn)"M位于坐標(biāo)軸上,求M的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案