如圖,梯形ABCD是世紀(jì)廣場(chǎng)的示意圖,上底AD=90m,下底BC=150m,高100m,虛線MN是梯形ABCD的中位線.要設(shè)計(jì)修建寬度相同的一條橫向和兩條縱向大理石通道,橫向通道EGHF位于MN兩旁,且EF、GH與MN之間的距離相等,兩條縱向通道均與BC垂直,設(shè)通道寬度為xm.
(1)試用含x的代數(shù)式表示橫向通道EGHF的面積S1;
(2)用含x的代數(shù)式表示三條通道的面積和S2
(3)若三條通道的面積和恰是梯形ABCD面積的
1
4
時(shí),求通道寬度x.
考點(diǎn):一元二次方程的應(yīng)用
專題:
分析:(1)由于上底AD=90m,下底BC=150m,利用中位線的性質(zhì)可以求出中位線的長(zhǎng)度,然后利用梯形的面積公式即可求解;
(2)根據(jù)(1)求出的橫向通道面積,再加上兩條豎的通道,再減去公共部分,即可求出三條通道的面積和S2;
(3)根據(jù)由于三條通道的面積和恰好是梯形ABCD面積的
1
4
,由此可以列出方程,求出符合題意的x即可.
解答:解:(1)∵上底AD=90m,下底BC=150m,
∴中位線的長(zhǎng)度為:(90+150)÷2=120(m),
∴s1=120x;

(2)∵豎的通道的高是100m,寬是x,
∴兩條豎的通道的面積是2×100x,
∵橫的通道和兩條豎的通道的公共部分的面是2x2
∵橫向通道面積是12x,
∴S2=120x+2×100x-2x2=320x-2x2;

(3)根據(jù)(2)可得:
120x+2×100x-2x2=
1
4
×
1
2
×(90+150)×100,
解得:x1=10,x2=150(不合題意,舍去),
則通道的寬是10m.
點(diǎn)評(píng):此題主要考查了一元二次方程的應(yīng)用,解題時(shí)首先正確理解題意,然后根據(jù)題意列出方程,注意在求面積(2)時(shí)一定減去公共部分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0),線段AB=6,sin∠ABC=
2
2
,M為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積;
(3)若點(diǎn)D為線段BM上任一點(diǎn)(點(diǎn)D不與點(diǎn)B重合,可與點(diǎn)M重合),過(guò)點(diǎn)D作垂直于x軸的直線x=t,交拋物線于點(diǎn)E,交線段BC于點(diǎn)F.
①求當(dāng)t為何值時(shí),線段DE有最大值?最大值是多少?
②是否存在這樣的點(diǎn)D,使得
ED
FD
=
1
2
?若存在,求出D點(diǎn)的坐標(biāo);若不存在,則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列運(yùn)算正確的是( 。
A、a2•a3=a6
B、
a2
=|a|
C、3a+2a=a5
D、(a+b)2=a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A是拋物線y=-
5
8
x2+5x
與x軸正半軸的交點(diǎn),點(diǎn)B在這條拋物線上,且點(diǎn)B的橫坐標(biāo)為2.連接AB并延長(zhǎng)交y軸于點(diǎn)C,拋物線的對(duì)稱軸交AC于點(diǎn)D,交x軸于點(diǎn)E.點(diǎn)P在線段CA上,過(guò)點(diǎn)P作x軸的垂線,垂足為點(diǎn)M,交拋物線于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求直線AB對(duì)應(yīng)的函數(shù)解析式.
(2)當(dāng)四邊形DEMQ為矩形時(shí),求點(diǎn)Q的坐標(biāo).
(3)設(shè)線段PQ的長(zhǎng)為d(d>0),求d關(guān)于m的函數(shù)解析式.
(4)在(3)的情況下,請(qǐng)直接寫(xiě)出當(dāng)d隨著m的增大而減小時(shí),m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

新定義:若x0=ax02+bx0+c成立,則稱點(diǎn)(x0,x0)為拋物線y=ax2+bx+c (a≠0)上的不動(dòng)點(diǎn).設(shè)拋物線C的解析式為:y=ax2+(b+1)x+(b-1),(a≠0)
(1)拋物線C過(guò)點(diǎn)(0,-3);如果把拋物線C向左平移
1
2
個(gè)單位后其頂點(diǎn)恰好在y軸上,求拋物線C的解析式及其上的不動(dòng)點(diǎn);
(2)對(duì)于任意實(shí)數(shù)b,實(shí)數(shù)a應(yīng)在什么范圍內(nèi),才能使拋物線C上總有兩個(gè)不同的不動(dòng)點(diǎn)?
(3)設(shè)a為整數(shù),且滿足a+b+1=0,若拋物線C與x軸兩交點(diǎn)的橫坐標(biāo)分別為x1,x2,是否存在整數(shù)k,使得 
x1
x2
+
x2
x1
=k-3
成立?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B.有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)在如圖(2)建立的坐標(biāo)系下,求網(wǎng)球飛行路線的拋物線解析式;
(2)若豎直擺放5個(gè)圓柱形桶時(shí),則網(wǎng)球能落入桶內(nèi)嗎?說(shuō)明理由;
(3)若要使網(wǎng)球能落入桶內(nèi),求豎直擺放的圓柱形桶的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)點(diǎn)Q是直線AC上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE垂直于x軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖正方形網(wǎng)格中,每個(gè)小方格的邊長(zhǎng)為1,請(qǐng)完成:
(1)從A點(diǎn)出發(fā)畫(huà)線段AB、AC、BC,使AB=
5
,AC=2
2
,BC=
17
,且使B、C兩點(diǎn)也在格點(diǎn)上;
(2)請(qǐng)求出圖中你所畫(huà)的△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中∠A=30°,E是AC邊上的點(diǎn),先將△ABE沿著B(niǎo)E翻折,翻折后△ABE的AB邊交AC于點(diǎn)D,又將△BCD沿著B(niǎo)D翻折,C點(diǎn)恰好落在BE上,此時(shí)∠CDB=82°,則原三角形的∠B=( 。┒龋
A、78°B、52°
C、68°D、75°

查看答案和解析>>

同步練習(xí)冊(cè)答案