【題目】如圖8,四邊形ABEG、GEFH、HFCD都是邊長為1的正方形.
(1)求證:△AEF∽△CEA;
(2)求證:∠AFB+∠ACB=45°.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)由勾股定理求出AE,EC的長,進而可得到AE:EF=EC:AE,再由公共角∠AEF=∠CEA,即可得出△FEA∽△AEC;
(2)由(1)得出對應(yīng)角相等∠AFB=∠EAC,再由三角形的外角性質(zhì)即可得出結(jié)論,
試題解析:證明:(1)∵四邊形ABEG、GEFH、HFCD是正方形
∴ AB=BE=EF=FC=1,∠ABE=90°
∴
∴
∴
又∵∠CEA=∠AEF,
∴ △CEA∽△AEF .
(2)∵△AEF∽△CEA,
∴∠AFE=∠EAC.
∵四邊形ABEG是正方形,
∴AD∥BC,AG=GE,∠AGE=90°.
∴∠ACB=∠CAD,∠EAG=45°,
∴∠AFB+∠ACB=∠EAC+∠CAD=∠EAG,
∴∠AFB+∠ACB=45° .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于, 兩點,交軸于點,直線經(jīng)過坐標原點,與拋物線的一個交點為,與拋物線的對稱交于點,連接,點, 的坐標分別為, .
()求拋物線的解析式,并分別求出點和點的坐標.
()在拋物線上是否存在點,使≌,若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90,D為BC邊上的中點,DE⊥AB,垂足為點E,過點B作BF∥AC交DE的延長線于點F,連接CF.
(1)求證:AD⊥CF;
(2)連接AF,試判斷△ACF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com