【題目】如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,COA的中點,點D在弧AB上,CDOB,則圖中休閑區(qū)(陰影部分)的面積是( 。

A. 10π)米2 B. π)米2 C. )米2 D. )米2

【答案】C

【解析】試題分析:先根據(jù)半徑OA長是6米,COA的中點可知OC=OA=3,再在RtOCD中,利用勾股定理求出CD的長,根據(jù)銳角三角函數(shù)的定義求出DOC的度數(shù),由S陰影=S扇形AOD-SDOC即可得出結(jié)論.

試題解析:連接OD,

AB的半徑OA長是6米,COA的中點,

OC=OA=×6=3米,

∵∠AOB=90°,CD∥OB

∴CD⊥OA,

Rt△OCD中,

∵OD=6,OC=3,

CD=米,

sinDOC=,

∴∠DOC=60°,

S陰影=S扇形AOD-SDOC==6π-)米2

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=1x軸的一個交點坐標(biāo)為(﹣10),其部分圖象如圖所示,下列結(jié)論

①4acb2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;

③3a+c0④當(dāng)y0,x的取值范圍是﹣1≤x3;

⑤當(dāng)x0,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中的箭頭所示方向運動,第一次從原點運動到點(22)第2次運動到點A4,0),第3次接著運動到點(6,1……按這樣的運動規(guī)律,經(jīng)過第2018次運動后動點P的坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點CCE∥BD,過點DDE∥AC,CEDE相交于點E

1)求證:四邊形CODE是矩形.

2)若AB=5,AC=6,求四邊形CODE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍,小穎在小亮出發(fā)后50分才乘上纜車,纜車的平均速度為180米/分,設(shè)小亮出發(fā)x分后行走的路程為y米.圖中的折線表示小亮在整個行走過程中yx的變化關(guān)系.

1)小亮行走的總路程是_________米,他途中休息了___________分;

2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;

3)當(dāng)小穎到達纜車終點時,小亮離纜車終點的路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀下文,尋找規(guī)律:

已知 x≠1 時,(1x)1x)1x,

(1x)(1xx)1x,

(1x)(1xxx)1x.…

觀察上式,并猜想:

(1x)(1xx xx) ____________. (1x)(1xxx) ____________.

2 通過以上規(guī)律,請你進行下面的探素:

(ab)(ab) ____________.

(ab)(aabb) ____________.

(ab)(aaabb ) ____________.

3 根據(jù)你的猜想,計算:

122222

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接五一節(jié),重百超市計劃銷售枇杷和櫻桃兩種水果共5000千克,若枇杷的數(shù)量是櫻桃的2倍少1000千克.

1)超市計劃銷售枇杷多少千克?

2)若超市從某一果園直接進貨,果園共30名員工負責(zé)采摘這兩種水果,每人每天能夠采摘30千克枇杷或10千克櫻桃,應(yīng)分別安排多少人采摘枇杷和櫻桃,才能確保采摘兩種水果所用的時間相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,

1)問應(yīng)將每件售價定為多少元時,才能使每天利潤為640元且成本最少?

2)問應(yīng)將每件售價定為多少元時,才能使每天利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線分別交ABAC于點D,E.

(1)求證:AE=2CE;

(2)連接CD,請判斷BCD的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案