【題目】如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過點(diǎn)FFGCD,交AE于點(diǎn)G,連接DG

(1)求證:四邊形DEFG為菱形;

(2)若CD=8,CF=4,求的值.

【答案】1)證明見試題解析;(2

【解析】試題分析:(1)由折疊的性質(zhì),可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再證明 FG=FE,即可得到四邊形DEFG為菱形;

2)在Rt△EFC中,用勾股定理列方程即可CD、CE,從而求出的值.

試題解析:(1)由折疊的性質(zhì)可知:DG=FGED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3∴FG=FE,∴DG=GF=EF=DE,四邊形DEFG為菱形;

2)設(shè)DE=x,根據(jù)折疊的性質(zhì),EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5CE=8﹣x=3,=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在正方形ABCD中,EAB上一點(diǎn),FAD延長線上一點(diǎn),且DFBE.求證:CECF;

2)如圖2,在正方形ABCD中,EAB上一點(diǎn),GAD上一點(diǎn),如果∠GCE45°,請你利用(1)的結(jié)論證明:GEBEGD

3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:

如圖3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°,ABBC,EAB上一點(diǎn),且∠DCE45°BE4,DE="10," 求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CDAB邊上的中線,ECD的中點(diǎn),過點(diǎn)CAB的平行線交AE的延長線于點(diǎn)F,連接BF

(1) 求證:CFAD;

(2) CACB∠ACB90°,試判斷四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點(diǎn)O,CEBDDEAC,若AC=4,則四邊形OCED的周長為(

A.4B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形, ,過點(diǎn)垂直直線于點(diǎn) ,再過點(diǎn)垂直于直線于點(diǎn),則__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彈簧掛上適當(dāng)?shù)闹匚锖髸匆欢ǖ囊?guī)律伸長,已知一彈簧的長度(cm)與所掛物體的質(zhì)量(kg)之間的關(guān)系如下表:

所掛物體的質(zhì)量(kg)

0

1

2

3

4

5

6

彈簧的長度(cm)

15

15.6

16.2

16.8

17.4

18

18.6

(1)上表反映了哪兩個變量之間的關(guān)系?哪個是自變量?

(2)寫出之間的關(guān)系式;

(3)當(dāng)物體的質(zhì)量逐漸增加時(shí),彈簧的長度怎樣變化?

(4)當(dāng)所掛物體的質(zhì)量為11.5kg時(shí),求彈簧的長度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請你用實(shí)例解釋下列代數(shù)式的意義:

15a+10b;

23x

3;

4;

5)(1-8%x;

6;

7;

8

9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O在直線AB上,OCOD,∠EDO與∠1互余.

1)求證:ED//AB;

2OF平分∠CODDE于點(diǎn)F,若∠OFD=65°,補(bǔ)全圖形,并求∠1的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案