【題目】閱讀下面材料:

小丁在研究數(shù)學(xué)問題時遇到一個定義:對于排好順序的三個數(shù): ,稱為數(shù)列.計算, 將這三個數(shù)的最小值稱為數(shù)列的價值.例如,對于數(shù)列2,1,3,因為, ,所以數(shù)列2,1,3的價值為

小丁進(jìn)一步發(fā)現(xiàn):當(dāng)改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應(yīng)的價值.如數(shù)列﹣1,2,3的價值為;數(shù)列31,2的價值為1;.經(jīng)過研究,小丁發(fā)現(xiàn),對于“21,3”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,價值的最小值為.根據(jù)以上材料,回答下列問題:

1)數(shù)列﹣4﹣3,2的價值為

2)將“﹣4,﹣3,2”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,這些數(shù)列的價值的最小值為 ,取得價值最小值的數(shù)列為 (寫出一個即可);

3)將2﹣9,aa1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的價值的最小值為1,則a的值為

【答案】12;-32,-42-3,-43114710

【解析】試題分析:1)根據(jù)上述材料給出的方法計算其相應(yīng)的價值即可;
2)按照三個數(shù)不同的順序排列算出價值,由計算可以看出,要求得這些數(shù)列的價值的最小值;只有當(dāng)前兩個數(shù)的和的絕對值最小,最小只能為|-3+2|=1,由此得出答案即可;
3)分情況算出對應(yīng)的數(shù)值,建立方程求得a的數(shù)值即可.

試題解析::(1)因為|-4|=4||=3.5,||=,
所以數(shù)列-4-3,2的價值為
2)數(shù)列的價值的最小值為||=,
數(shù)列可以為:-3,2-4,;或2,-3,-4
3)當(dāng)||=1,則a=0,不合題意;
當(dāng)||=1,則a=117;
當(dāng)||=1,則a=410

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x2+(2m﹣1)x+m2﹣1經(jīng)過坐標(biāo)原點,且當(dāng)x<0時,y隨x的增大而減。
(1)求拋物線的解析式;
(2)結(jié)合圖象寫出,0<x<4時,直接寫出y的取值范圍
(3)設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.當(dāng)BC=1時,求出矩形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙的直徑,CD是∠ACB的平分線交⊙O于點D,過D作⊙O的切線交CB的延長線于點E.若AB=4,∠E=75°,則CD的長為(
A.
B.2
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要舉辦一次演講比賽,每班只能選一人參加比賽.但八年級一班共有甲、乙兩人的演講水平相不相上下,現(xiàn)要在他們兩人中選一人去參加全校的演講比賽,經(jīng)班主任與全班同學(xué)協(xié)商決定用摸小球的游戲來確定誰去參賽(勝者參賽). 游戲規(guī)則如下:在兩個不透明的盒子中,一個盒子里放著兩個紅球,一個白球;另一個盒子里放著三個白球,一個紅球,從兩個盒子中各摸一個球,若摸得的兩個球都是紅球,甲勝;摸得的兩個球都是白球,乙勝,否則,視為平局.若為平局,繼續(xù)上述游戲,直至分出勝負(fù)為止.
根據(jù)上述規(guī)則回答下列問題:
(1)從兩個盒子各摸出一個球,一個球為白球,一個球為紅球的概率是多少?
(2)該游戲公平嗎?請用列表或樹狀圖等方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求經(jīng)過點C的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD//BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB= , PD=
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;
(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民的用電情況,隨機(jī)對該社區(qū)10戶居民進(jìn)行調(diào)查,下表是這10戶居民2016年4月份用電量的調(diào)查結(jié)果:

居民(戶)

1

2

3

4

月用電量(度/戶)

30

42

50

51

那么關(guān)于這10戶居民月用電量的說法錯誤的是(
A.中位數(shù)是50
B.眾數(shù)是51
C.平均數(shù)是46.8
D.方差是42

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下表: 我們把某格中字母和所得到的多項式稱為特征多項式,例如第1格的“特征多項式”為4x+y,回答下列問題:

序號

1

2

3

圖形

x x
y
x x

x x x
y y
x x x
y y
x x x

x x x x
y y y
x x x x
y y y
x x x x
y y y
x x x x


(1)第3格的“特征多項式”為 , 第4格的“特征多項式”為 , 第n格的“特征多項式”為;
(2)若第1格的“特征多項式”的值為﹣10,第2格的“特征多項式”的值為﹣16. ①求x,y的值;
②在①的條件下,第n格的“特征多項式”是否有最小值?若有,求出最小值和相應(yīng)的n值;若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案