【題目】“構(gòu)造圖形解題”,它的應用十分廣泛,特別是有些技巧性很強的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時,如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實例:
實例一:1876年,美國總統(tǒng)伽非爾德利用實例一圖證明了勾股定理:由
S四邊形ABCD=S△ABC+S△ADE+S△ABE得,化簡得:
實例二:歐幾里得的《幾何原本》記載,關于x的方程的圖解法是:
畫Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜邊AB上截取BD=,則AD的長就是該方程的一個正根(如實例二圖)
請根據(jù)以上閱讀材料回答下面的問題:
(1)如圖1,請利用圖形中面積的等量關系,寫出甲圖要證明的數(shù)學公式是 ,乙圖要證明的數(shù)學公式是
(2)如圖2,若2和-8是關于x的方程x2+6x=16的兩個根,按照實例二的方式構(gòu)造Rt△ABC,連接CD,求CD的長;
(3)若x,y,z都為正數(shù),且x2+y2=z2,請用構(gòu)造圖形的方法求的最大值.
【答案】(1)完全平方公式;平方差公式;(2);(3)
【解析】
(1)利用面積法解決問題即可;
(2)如圖2,作于點H,由題意可得出,利用面積求出的長,再利用勾股定理求解即可;
(3)如圖3,用4個全等的直角三角形(兩直角邊分別為x,y,斜邊為z),拼如圖正方形,當時定值,z最小時,的值最大值.易知,當小正方形的頂點是大正方形的中點時,z的值最小,此時,,據(jù)此求解即可.
解:(1)圖1中甲圖大正方形的面積
乙圖中大正方形的面積
即
∴甲圖要證明的數(shù)學公式是完全平方公式,乙圖要證明的公式是平方差公式;
故答案為:完全平方公式;平方差公式;
(2)如圖2,作于點H,
根據(jù)題意可知,
根據(jù)三角形的面積可得:
解得:
根據(jù)勾股定理可得:
根據(jù)勾股定理可得:;
(3)如圖3,用4個全等的直角三角形(兩直角邊分別為x,y,斜邊為z),拼如圖正方形
當時定值,z最小時,的值最大值
易知,當小正方形的頂點是大正方形的中點時,z的值最小,此時,,
∴的最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B兩點的坐標分別為(40,0)和(0,30),動點P從點A開始在線段AO上以每秒2個長度單位的速度向原點O運動、動直線EF從x軸開始以每秒1個單位的速度向上平行移動(即EF∥x軸),并且分別與y軸、線段AB交于點E、F,連接EP、FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)求t=15時,△PEF的面積;
(2)直線EF、點P在運動過程中,是否存在這樣的t,使得△PEF的面積等于160(平方單位)?若存在,請求出此時t的值;若不存在,請說明理由.
(3)當t為何值時,△EOP與△BOA相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(慶陽中考)現(xiàn)在的青少年由于沉迷電視、手機、網(wǎng)絡游戲等,視力日漸減退,某市為了了解學生的視力變化情況,從全市九年級隨機抽取了1 500名學生,統(tǒng)計了每個人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計圖,并對視力下降的主要因素進行調(diào)查,制成扇形統(tǒng)計圖.
解答下列問題:
(1)圖中D所在扇形的圓心角度數(shù)為______;
(2)若2016年全市共有30 000名九年級學生,請你估計視力在4.9以下的學生約有多少名?
(3)根據(jù)扇形統(tǒng)計圖信息,你覺得中學生應該如何保護視力?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校準備開展“陽光體育活動”,決定開設以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學生必須且只能選擇一項,為了解選擇各種體育活動項目的學生人數(shù),隨機抽取了部分學生進行調(diào)查,并將獲得的數(shù)據(jù)進行整理,繪制出兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題.
(1)這次活動一共調(diào)查了________名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于________度;
(4)若該學校有1000人,請你估計該學校選擇乒乓球項目的學生人數(shù)約是________人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與探究
我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.請結(jié)合上述閱讀材料,解決下列問題:
在我們所學過的特殊四邊形中,是勾股四邊形的是________ (任寫一種即可);
圖1、圖2均為的正方形網(wǎng)格,點均在格點上,請在圖中標出格點,連接,使得四邊形符合下列要求:圖1中的四邊形是勾股四邊形,并且是軸對稱圖形;圖2中的四邊形是勾股四邊形且對角線相等,但不是軸對稱圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接,與拋物線的對稱軸交于點,點為線段上的一個動點,過點作PF∥DE交拋物線于點F,設點P的橫坐標為m;
①用含m的代數(shù)式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設△BCF的面積為S,求S與m的函數(shù)關系式,S是否有最大值?如有,請求出最大值,沒有請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC頂角∠A=36°.
(1)尺規(guī)作圖:在AC上作一點D,使AD=BD;(保留作圖痕跡,不必寫作法和證明)
(2)求證:△BCD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①a<0;② =1;③b2﹣4ac<0;④當x>1時,y隨x的增大而減小;⑤當﹣1<x<3時,y<0,其中正確的是_____.(只填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com