【題目】在一次環(huán)保知識測試中,三年一班的兩名同學根據班級成績(分數為整數)分別繪制了不同的頻率分布直方圖,如圖1、2,已知圖1從左到右每個小組的頻率分別為0.04、0.08、0.24、0.32、0.20、0.12,其中68.5~76.5小組的頻數為12;圖2從左到右每個小組的頻數之比為1:2:4:7:6:3:2,請結合條件和頻率分布直方圖回答下列問題:
(1)三年一班參加測試的人數是多少?
(2)若這次測試的成績80分以上(含80分)為優(yōu)秀,則優(yōu)秀率是多少?
(3)若這次測試的成績60分以上(含60分)為及格,則及格率是多少?
【答案】(1)50人(2)44%(3)96%
【解析】試題分析:(1)根據頻率分布直方圖知道68.5~76.5小組為第三小組,頻率為0.24,頻數為12,由此即可求出三年一班參加測試的人數;
(2)根據圖2從左到右每個小組的頻數之比為1:2:4:7:6:3:2可以求出各個小組的頻率,然后就可以找到這次測試的成績80分以上(含80分)的人數,也就可以求出優(yōu)秀率;
(3)根據圖1可以得到這次測試的成績60分以上(含60分)的人數,然后除以總人數即可求出及格率是多少.
試題解析: (1)依題意得68.576.5小組為第三小組,頻率為0.24,頻數為12,
∴三年一班參加測試的人數是: 人.
(2)由圖2知,優(yōu)秀人數從第五小組開始出現,
而圖2從左到右每個小組的頻數之比為1:2:4:7:6:3:2,
∴優(yōu)秀率為
(3)∵圖1從左到右每個小組的頻率分別為0.04、0.08、0.24、0.32、0.20、0.12,
∴這次測試成績的及格率為
科目:初中數學 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°.公路PQ上A處距離O點240米.如果火車行駛時,周圍200米以內會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,
(1)A處是否會受到火車的影響,并寫出理由
(2)如果A處受噪音影響,求影響的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,雙曲線y=與直線y=﹣2x+2交于點A(﹣1,a).
(1)求a,m的值;
(2)求該雙曲線與直線y=﹣2x+2另一個交點B的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如下圖1,在四邊形ABCD中,點E、F分別是AB、CD的中點.過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連結GA、GB、GC、GD、EF,若∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2,若AD、BC所在直線互相垂直,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】機動車出發(fā)前油箱內有42升油,行駛若干小時后,途中在加油站加油若干升.油箱中余油量(升)與行駛時間(小時)之間的關系如圖所示,根據下圖回答問題:
(1)機動車行駛幾小時后加油?加了多少油?
(2)試求加油前油箱余油量與行駛時間之間的關系式;
(3)如果加油站離目的地還有350千米,車速為60千米/小時,照這樣行駛,要到達目的地,油箱中的油是否夠用?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,兩半徑為r的等圓⊙O1和⊙O2相交于M,N兩點,且⊙O2過點O1.過M點作直線AB垂直于MN,分別交⊙O1和⊙O2于A,B兩點,連接NA,NB.
(1)猜想點O2與⊙O1有什么位置關系,并給出證明;
(2)猜想△NAB的形狀,并給出證明;
(3)如圖2,若過M的點所在的直線AB不垂直于MN,且點A,B在點M的兩側,那么(2)中的結論是否成立,若成立請給出證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2+bx+c的圖象經過點A(﹣3,6),并與x軸交于點B(﹣1,0)和點C,頂點為P.
(1)求這個二次函數的解析式,并在下面的坐標系中畫出該二次函數的圖象;
(2)設D為線段OC上的一點,滿足∠DPC=∠BAC,求點D的坐標;
(3)在x軸上是否存在一點M,使以M為圓心的圓與AC、PC所在的直線及y軸都相切?如果存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】五一節(jié)快到了,甲、乙兩家旅行社為了吸引更多的顧客,分別提出了赴某地旅游的團體優(yōu)惠方法,甲旅行社的優(yōu)惠方法是:買4張全票,其余人按半價優(yōu)惠;乙旅行社的優(yōu)惠方法是:一律按7折優(yōu)惠,已知兩家旅行社的原價均為每人100元。(旅游人數超過4人)
(1)分別表示出甲旅行社收費y1 ,乙旅行社收費y2與旅游人數x的函數關系式.
(2)就參加旅游的人數討論哪家旅行社的收費更優(yōu)惠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
1637年笛卡爾在其《幾何學》中,首次應用“待定系數法”將四次方程分解為兩個二次方程求解,并最早給出因式分解定理.
他認為:對于一個高于二次的關于x的多項式,“是該多項式值為0時的一個解”與“這個多項式一定可以分解為()與另一個整式的乘積”可互相推導成立.
例如:分解因式.
∵是的一個解,∴可以分解為與另一個整式的乘積.
設
而,則有
,得,從而
運用材料提供的方法,解答以下問題:
(1)①運用上述方法分解因式時,猜想出的一個解為_______(只填寫一個即可),則可以分解為_______與另一個整式的乘積;
②分解因式;
(2)若與都是多項式的因式,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com