【題目】小明對(duì)自己上學(xué)路線的長(zhǎng)度進(jìn)行了20次測(cè)量,得到20個(gè)數(shù)據(jù)x1,x2,…,x20,已知x1+x2+…+x20=2019,當(dāng)代數(shù)式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值時(shí),x的值為___________.
【答案】100.95
【解析】
先設(shè)出y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,然后進(jìn)行整理得出y=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),再求出二次函數(shù)的最小值即可.
解:設(shè)y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2
=x2-2xx1+x12+x2-2xx2+x22+x2-2xx3+x32+…+x2-2xx20+x202
=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),
=20x2-2×2019x+(x12+x22+x32+…+x202),
則當(dāng)x=時(shí),(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值,
即當(dāng)x=100.95時(shí),(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值.
故答案為:100.95.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形紙片ABCD中,∠B=∠D=90°,點(diǎn)E,F(xiàn)分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點(diǎn)B,D恰好都和點(diǎn)G重合,∠EAF=45°.
(1)求證:四邊形ABCD是正方形;
(2)求證:三角形ECF的周長(zhǎng)是四邊形ABCD周長(zhǎng)的一半;
(3)若EC=FC=1,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 4臺(tái) | 1200元 |
第二周 | 5臺(tái) | 6臺(tái) | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B兩點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為–10,OB=4OA,點(diǎn)M以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)A開始向左運(yùn)動(dòng),點(diǎn)N以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)B開始向左運(yùn)動(dòng)(點(diǎn)M和點(diǎn)N同時(shí)出發(fā)).
(1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是__________,線段AB的中點(diǎn)C對(duì)應(yīng)的數(shù)是__________;
(2)經(jīng)過(guò)幾秒,點(diǎn)M、點(diǎn)N到原點(diǎn)的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BE∥DF的是( 。
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識(shí)為“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是 ;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校有1800名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有 名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△BAC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′,若∠CC′B′=30°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在△ABC中,AB=BC,P為AB邊上一點(diǎn),連接CP,以PA、PC為鄰邊作APCD,AC與PD相交于點(diǎn)E,已知∠ABC=∠AEP=(0°<<90°).
(1)求證: ∠EAP=∠EPA;
(2)APCD是否為矩形?請(qǐng)說(shuō)明理由;
(3)如圖(2),F為BC中點(diǎn),連接FP,將∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(點(diǎn)M、N分別是∠MEN的兩邊與BA、FP延長(zhǎng)線的交點(diǎn)).猜想線段EM與EN之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com