【題目】如圖1,四邊形ABCD是正方形,點G是BC邊上任意一點.DE⊥AG于點E,BF∥DE且交AG于點F.
(1)求證:AE=BF;
(2)如圖2,如果點G是BC延長線上一點,其余條件不變,則線段AF、BF、EF有什么數(shù)量關系?請證明出你的結論.
【答案】(1)見解析;(2)AF+EF=BF,證明見解析
【解析】
(1)根據(jù)正方形的四條邊都相等可得DA=AB,再根據(jù)同角的余角相等求出∠BAF=∠ADE,然后利用“角角邊”證明△ABF和△DAE全等,再根據(jù)全等三角形對應邊相等可得BF=AE,AF=DE,然后根據(jù)圖形列式整理即可得證;
(2)根據(jù)題意作出圖形,然后根據(jù)(1)的結論可得BF=AE,AF=DE,然后結合圖形寫出結論即可.
(1)證明:∵四邊形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(AAS),
∴BF=AE,AF=DE,
(2)AF+BF=EF;
∵四邊形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(AAS),
∴BF=AE,AF=DE,
∴AF+EF=BF.
科目:初中數(shù)學 來源: 題型:
【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,
(1)寫出A、B、C的坐標.
(2)以原點O為中心,將△ABC圍繞原點O逆時針旋轉180°得到△A1B1C1,畫出△A1B1C1.
(3)求(2)中C到C1經(jīng)過的路徑以及OB掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校研究性學習小組在研究有關二次函數(shù)及其圖象性質(zhì)的問題時,發(fā)現(xiàn)了兩個重要結論.一是發(fā)現(xiàn)拋物線y=ax2+2x+3(a≠0),當實數(shù)a變化時,它的頂點都在某條直線上;二是發(fā)現(xiàn)當實數(shù)a變化時,若把拋物線y=ax2+2x+3的頂點的橫坐標減少,縱坐標增加,得到A點的坐標;若把頂點的橫坐標增加,縱坐標增加,得到B點的坐標,則A、B兩點一定仍在拋物線y=ax2+2x+3上.
(1)請你協(xié)助探求出當實數(shù)a變化時,拋物線y=ax2+2x+3的頂點所在直線的解析式;
(2)問題(1)中的直線上有一個點不是該拋物線的頂點,你能找出它來嗎?并說明理由;
(3)在他們第二個發(fā)現(xiàn)的啟發(fā)下,運用“一般﹣一特殊﹣一般”的思想,你還能發(fā)現(xiàn)什么?你能用數(shù)學語言將你的猜想表述出來嗎?你的猜想能成立嗎?若能成立請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過(-1,0),(0,-3),(2,-3)三點.
(1)求這條拋物線的解析式;
(2)寫出拋物線的開口方向、對稱軸和頂點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度數(shù);
(2)如圖②,若把“AE⊥BC”變成“點F在DA的延長線上,FE⊥BC”,其它條件不變,求∠DFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中.直線y=﹣x+3與x軸交于點B,與y軸交于點C,拋物線y=ax2+bx+c經(jīng)過B,C兩點,與x軸負半軸交于點A,連結AC,A(-1,0)
(1)求拋物線的解析式;
(2)點P(m,n)是拋物線上在第一象限內(nèi)的一點,求四邊形OCPB面積S關于m的函數(shù)表達式及S的最大值;
(3)若M為拋物線的頂點,點Q在直線BC上,點N在直線BM上,Q,M,N三點構成以MN為底邊的等腰直角三角形,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖點P是△ABC的邊BC上的一動點,點E與點P關于直線AB成軸對稱,連接EP交AB于點F,連接AP、EC相交于點O,連接AE.
(1)判斷AE與AP的數(shù)量關系,并說明理由.
(2)在點P的運動過程中,當AE∥BC時,判斷AP與BP的數(shù)量關系,并說明理由.
(3)若∠BAC=900,點P在運動過程中是否存在線段AP與線段EC互相平分的情況,若存在,請求出點P的位置;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線分別與x軸、y軸交于兩點,與直線交于點C(4,2).
(1)點A坐標為( , ),B為( , );
(2)在線段上有一點E,過點E作y軸的平行線交直線于點F,設點E的橫坐標為m,當m為何值時,四邊形是平行四邊形;
(3)若點P為x軸上一點,則在平面直角坐標系中是否存在一點Q,使得四個點能構成一個菱形.若存在,求出所有符合條件的Q點坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com