【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2﹣10ax+16a(a≠0)交x軸于A、B兩點(diǎn),拋物線的頂點(diǎn)為D,對稱軸與x軸交于點(diǎn)H,且AB=2DH.
(1)求a的值;
(2)點(diǎn)P是對稱軸右側(cè)拋物線上的點(diǎn),連接PD,PQ⊥x軸于點(diǎn)Q,點(diǎn)N是線段PQ上的點(diǎn),過點(diǎn)N作NF⊥DH于點(diǎn)F,NE⊥PD交直線DH于點(diǎn)E,求線段EF的長;
(3)在(2)的條件下,連接DN、DQ、PB,當(dāng)DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°時(shí),作NC⊥PB交對稱軸左側(cè)的拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo).
【答案】(1);(2)3;(3)點(diǎn)C(﹣1,9)..
【解析】試題分析:(1)根據(jù)y=ax2-10ax+16a可以求得當(dāng)y=0時(shí),x的值,從而可以求得點(diǎn)A、B的坐標(biāo),由拋物線的頂點(diǎn)為D,對稱軸與x軸交于點(diǎn)H,且AB=2DH,從而可以求得a的值;
(2)根據(jù)已知條件作出相應(yīng)的圖形,然后根據(jù)題意題目中的數(shù)量關(guān)系,通過靈活變形可以求得EF的長;
(3)根據(jù)題意可以畫出相應(yīng)的圖形,然后根據(jù)題目中的關(guān)系,利用三角形相似,靈活變化可以求得點(diǎn)C的坐標(biāo).
試題解析:(1)令y=0,得x=2或x=8,∴點(diǎn)A(2,0),B(8,0),∴AB=6,
∵AB=2DH,∴DH=3,
∵OH=2+,∴D(5,﹣3),∴﹣3=a×52﹣10a×5+16a,得a=;
(2)如圖1,過點(diǎn)D作PQ的垂線,交PQ的延長線于點(diǎn)M,
∵NE⊥PD,∴∠DPN+∠PNE=90°,∵NF⊥DE,∴∠FEN+∠FNE=90°,
又∵DH⊥x軸,PQ⊥x軸,∴DE∥PQ,∴∠FEN=∠PNE,∴∠DPM=∠ENF,∴△EFN∽△DMP,
∴,設(shè)點(diǎn)P(t, ),則FN=DM=t﹣5,PM=+3,代入解得EF=3;
(3)如圖2,作QG⊥DN于點(diǎn)G,∵DF∥PQ,∴∠FDN=∠DNQ,∵2∠NDQ+∠DNQ=90°,
∴2∠NDQ+∠FDN=90°,∵∠FDM=90°,∴∠NDM=2∠NDQ,∴∠NDQ=∠MDQ,∴QG=QM=DH=3,
設(shè)QN=m,則DN=2m,∵sin∠DNM=,sin∠QNG=,sin∠DNM=sin∠QNG,
∴,得DM=6=DG,∴OQ=5+6=11,
∴點(diǎn)P的縱坐標(biāo)是: =9,∴點(diǎn)P(11,9),
∵NG=2m﹣6,在Rt△NGQ中,QG2+NG2=QN2,
∴32+(2m﹣6)2=m2,得,m=3(舍)或m=5,
設(shè)C(n, ),作CK⊥x軸于點(diǎn)K,作NF⊥CK于點(diǎn)K,則CT=,NT=11﹣n,
∵P(11,9),則BQ=11﹣8=3,PQ=9,
∵CN⊥PB,PQ∥CK,PQ⊥x軸, ∴△CTN∽△BQP,
∴, 即, 解得,n=﹣1或n=10(舍去),
∴點(diǎn)C(﹣1,9).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是x與y的幾組對應(yīng)值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是24,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn).若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△CDM周長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)x3x4x5
(2);
(3)(﹣2mn2)2﹣4mn3(mn+1);
(4)3a2(a3b2﹣2a)﹣4a(﹣a2b)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點(diǎn)D,連接CD.
(1)求證:CD平分∠ECA.
(2)猜想∠BDC與∠BAC之間有何數(shù)量關(guān)系?并對你的猜想加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)12+(-3.4)-(-13.4)
(2)
(3)0-5+-25-26
(4)-4÷×
(5)×(-24)
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自駕游是當(dāng)今社會(huì)一種重要的旅游方式,五一放假期間小明一家人自駕去靈山游玩,下圖描述了小明爸爸駕駛的汽車在一段時(shí)間內(nèi)路程s(千米)與時(shí)間t(小時(shí))的函數(shù)關(guān)系,下列說法中正確的是( )
A. 汽車在0~1小時(shí)的速度是60千米/時(shí); B. 汽車在2~3小時(shí)的速度比0~0.5小時(shí)的速度快;
C. 汽車從0.5小時(shí)到1.5小時(shí)的速度是80千米/時(shí); D. 汽車行駛的平均速度為60千米/時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式.(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元,那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分ABC,P是BD上一點(diǎn),過點(diǎn)P作PM^AD,PN^CD,垂足分別為M、N。
(1)求證:ADB=CDB;
(2)若ADC=90°,求證:四邊形MPND是正方形。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com