【題目】如圖,已知在△ABC中,∠A=155°,第一步:在△ABC的上方確定點A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在△A1BC的上方確定點A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA;…,照此繼續(xù),最多能進(jìn)行_____步.
【答案】6
【解析】
先根據(jù)三角形內(nèi)角和定理,得到∠ABC+∠ACB=25°,再根據(jù)第一步操作,即可得到∠A1BC+∠A1CB=50°,進(jìn)而得出∠A1的度數(shù);根據(jù)三角形內(nèi)角和為180°,即可得到最多能進(jìn)行的步數(shù).
∵△ABC中,∠A=155°,
∴∠ABC+∠ACB=25°,
又∵∠A1BA=∠ABC,∠A1CA=∠ACB,
∴∠A1BC+∠A1CB=50°,
∴△A1BC中,∠A1=180°-50°=130°;
∵25°+25°×6=175°<180°,25°+25°×7=200°>180°,
∴最多能進(jìn)行6步,
故答案為: 6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,N,P,G分別在邊AB,BC,CD,DA上,點M,F(xiàn),Q都在對角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,E為CD邊上一點,且AE、BE分別平分∠DAB、∠ABC.
(1)求證:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一邊AB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點P在∠AOB內(nèi),點M、N分別是點P關(guān)于AO、BO所在直線的對稱點.
(1)若△PEF的周長為20,求MN的長.
(2)若∠O=50°,求∠EPF的度數(shù).
(3)請直接寫出∠EPF與∠O的數(shù)量關(guān)系是_____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于點F,則∠DFB度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,則CE2+CF2等于( )
A.75
B.100
C.120
D.125
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,則∠A、∠C、∠E、∠F滿足的數(shù)量關(guān)系是( )
A. ∠A=∠C+∠E+∠F B. ∠A+∠E﹣∠C﹣∠F=180°
C. ∠A﹣∠E+∠C+∠F=90° D. ∠A+∠E+∠C+∠F=360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,四邊形是矩形,點的坐標(biāo)分別為,點以的速度從出發(fā)向終點運動,點以的速度從出發(fā)向終點運動,當(dāng)是以為一腰的等腰三角形時,點的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年年初,我國爆發(fā)新冠肺炎疫情,某省鄰近縣市 C、D 獲知 A、B 兩市分別急需救援物資 200噸和 300 噸的消息后,決定調(diào)運物資支援.已知 C 市有救援物資 240 噸,D 市有救援物資 260 噸,現(xiàn)將這些救援物資全部調(diào)往 A、B 兩市.已知從 C 市運往 A、B 兩市的費用分別為每噸 20 元和 25 元,從D 市運往往 A、B 兩市的費用分別為每噸 15 元和 30 元,設(shè)從 C 市運往 A 市的救援物資為 x 噸.
(1) 請?zhí)顚懴卤恚?/span>
A | B | 合計(噸) | |
C | x | _____ | 240 |
D | _____ | _____ | 260 |
總計(噸) | 200 | 300 | 500 |
(2)設(shè) C、D 兩市的總運費為 W 元,則 W 與 x 之間的函數(shù)關(guān)系式為_________,其中自變量 x的取值范圍是________;
(3)經(jīng)過搶修,從 C 市到 B 市的路況得到了改善,縮短了運輸時間,運費每噸減少 n 元(n>10),其余路線運費不變,若 C、D 兩市的總運費的最小值不小于 7920 元,則 n 的取值范圍是______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com