【題目】如圖,∠A+∠B+∠C+∠D+∠E+∠F=_______度.
【答案】360°
【解析】
先根據(jù)圖形的特點,將∠A +∠B、∠C +∠D和∠E +∠F分別轉(zhuǎn)化成和它不相鄰的外角,再根據(jù)鄰補角的定義轉(zhuǎn)化為一個三角形的內(nèi)角,然后利用三角形的內(nèi)角和定理求解即可.
如圖,記BF交DE于G,交AC于H,DE交AC于I ,
∵∠FHI=∠A +∠B,
∴∠GHI=180°-∠FHI=180°-(∠A+ ∠B),
∵∠AIG=∠C +∠D,
∴∠GIH=180°-∠AIG=180°-(∠C +∠D),
∵∠BGI=∠E +∠F,
∴∠HGI=180°-∠BGI=180°-(∠E +∠F),
∵∠GHI+∠GIH +∠HGI=180°,
∴180°-(∠A +∠B)+ 180°-(∠C +∠D)+ 180°-(∠E+ ∠F)=180°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是⊙O外的一點,PA、PB是⊙O的兩條切線,A、B是切點,PO交AB于點F,延長BO交⊙O于點C,交PA的延長交于點Q,連結(jié)AC.
(1)求證:AC∥PO;
(2)設(shè)D為PB的中點,QD交AB于點E,若⊙O的半徑為3,CQ=2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;
(3)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以AB為直徑的半圓中,將弧BC沿弦BC折疊交AB于點D,若AD=5,DB=7.
(1)求BC的長;
(2)求圓心到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均在格點上,在△ABC的內(nèi)部有一點P,滿足S△PAB:S△PBC:S△PCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度直尺畫出點P(保留畫圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(組)或不等式(組)解應(yīng)用題:
(1)甲工人接到240個零件的任務(wù),工作1小時后,因要提前完成任務(wù),調(diào)來乙和甲合作,合做了5小時完成.已知甲每小時比乙少做4個,那么甲、乙每小時各做多少個?
(2)某工廠準備購進、兩種機器共20臺用于生產(chǎn)零件,經(jīng)調(diào)查2臺型機器和1臺型機器價格為18萬元,1臺型機器和2臺型機器價格為21萬元.
①求一臺型機器和一臺型機器價格分別是多少萬元?
②已知1臺型機器每月可加工零件400個,1臺型機器每月可加工零件800個,經(jīng)預(yù)算購買兩種機器的價格不超過140萬元,每月兩種機器加工零件總數(shù)不低于12400個,那么有哪幾種購買方案,哪種方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)﹣5,|﹣1.5|,﹣,0,3,﹣(﹣1)表示的點.
(1)畫在數(shù)軸上;
(2)用“<”把這些數(shù)連接起來;
(3)指出:負數(shù)是 ;分數(shù)是 ;非負整數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生最喜歡的球類運動情況,隨機選取該校部分學(xué)生進行調(diào)查,要求每名學(xué)生只寫一類最喜歡的球類運動.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生中,最喜歡乒乓球的有 人,最喜歡籃球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;
(2)被調(diào)查學(xué)生的總數(shù)為 人,其中,最喜歡籃球的有 人,最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;
(3)該校共有450名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校最喜歡排球的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com