如圖,拋物線與x軸交于點A,將線段OA繞點O逆時針旋轉(zhuǎn)1200至OB的位置.

(1)點B在拋物線上;

(2)在此拋物線的對稱軸上,是否存在點P,使得以點P、O、B為頂點的三角形是等腰三角形?若存在,求點P的坐標;若不存在,說明理由.


解:(1)如圖1,過點B作BC⊥x軸于點C,

(2)存在。

如圖2,拋物線的對稱軸是x=2,直線x=2與x軸的交點為D,設(shè)點P的坐標為(2,y)。

①若OB=OP,則22+|y|2=42,解得y=±,

當(dāng)y=時,

在Rt△POD中,∠PDO=90°,sin∠POD=,

∴∠POD=60°。

∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三點在同一直線上。

∴y=不符合題意,舍去。

∴點P的坐標為(2,)。

【考點】二次函數(shù)綜合題,旋轉(zhuǎn)的性質(zhì),銳角三角函數(shù)定義,特殊角的三角函數(shù)值,曲線上點的坐標與方程的關(guān)系,等腰三角形的性質(zhì),勾股定理,分類思想的應(yīng)用。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


在平面直角坐標系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.

(1)寫出A、C兩點的坐標;

(2)當(dāng)0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;

(3)當(dāng)1<m<2時,是否存在實數(shù)m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知:如圖一,拋物線與x軸正半軸交于A、B兩點,與y軸交于點C,直線經(jīng)過A、C兩點,且AB=2.

(1)求拋物線的解析式;

(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當(dāng)點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒 ;設(shè),當(dāng)t 為何值時,s有最小值,并求出最小值。

(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線經(jīng)過點A,B及原點O,頂點為C,直線OB為,點P是拋物線上的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P,M,A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10

(1)求梯形ABCD的面積;

(2)動點P從點B出發(fā),以2個單位/s的速度沿B→A→D→C方向向點C運動;動點Q從點C出發(fā),以2個單位/s的速度沿C→D→A方向向點A運動;過點Q作QE⊥BC于點E.若P、Q兩點同時出發(fā),當(dāng)其中一點到達終點時另一點也隨之停止運動,設(shè)運動時間為t秒.問:

①當(dāng)點P在B→A上運動時,是否存在這樣的t,使得直線PQ將梯形ABCD的周長平分?若存在,請求出t的值,并判斷此時PQ是否平分梯形ABCD的面積;若不存在,請說明理由.

②在運動過程中,是否存在這樣的t,使得以P、D、Q為頂點的三角形恰好是以DQ為一腰的等腰三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,O為坐標原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,OB=,BF=BC。過點F作EF∥OB,交OA于點,點P為直線EF上的一個動點,連接PA,PO。若以P、O、A為頂點的三角形是直角三角形,請求出所有點P的坐標。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖, 在Rt△ABC中,∠C=90º, AC=9,BC=12,動點P從點A開始沿邊AC向點C以每秒1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ. 點P、Q分別從點A、C同時出發(fā),當(dāng)其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=__________, PD=___________;

(2)是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由;

(3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變點Q的速度(勻速運動),使四邊形PDBQ在某一時刻成為菱形,求點Q的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,一個半徑為r的圓形紙片在邊長為)的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是(    )

A.        B.         C.         D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


觀察一列單項式:2x,4x2,6x3,8x,10x2,12x3,…,則第2014個單項式是       

查看答案和解析>>

同步練習(xí)冊答案